Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Tự vẽ hình nhé bạn
a) * Xét \(\Delta\)ABC có :
M là trung điểm AB
N là trung điểm BC
\(\Rightarrow\)MN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)MN // AC hay MN // AQ ( 1 )
* Xét \(\Delta\)ABC có :
Q là trung điểm AC
N là trung điểm BC
\(\Rightarrow\)QN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)QN // AB hay QN // AM ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Tứ giác AQNM là hình bình hành mà có một góc vuông nên nó là hình chữ nhật.
b) Dễ thấy : \(\Delta\)AIM = \(\Delta\)BNM ( c - g - c )
\(\Rightarrow\)Góc AIM = Góc BNM ( 2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên IA // BN ( 3 )
Dễ thấy : \(\Delta\)KAQ = \(\Delta\)NCQ ( c - g - c )
\(\Rightarrow\)Góc AKQ = Góc CNQ ( 2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên AK // NC ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)Ba điểm I, A, K thẳng hàng ( theo tiên đề Ơ - clit )
c) Ta có :
AI = BN ( cmt ) và AK = NC ( cmt )
Mà BN = NC nên AI = AK
ủa hình như góc AIM với góc BNM đâu có so le trong ?
a: Xét ΔCAB có CQ/CA=CN/CB
nên QN//AB và QN=1/2BA
=>QN=AM và QN=AM
=>AMNQ là hình bình hành
mà góc QAM=90 độ
nên AMNQ là hình chữ nhật
b: Xét tứ giác ANBI có
M là trung điểm chung của AB và NI
NA=NB
Do đó: ANBI là hình thoi
=>AB là phân giác của góc NAI(1) và NA=NI
Xét tứ giác ANCK có
Q là trung điểm chung của AC và NK
NA=NC
DO đo: ANCK là hình thoi
=>AC là phân giác của góc NAK(2) và AK=AN
Từ (1) và (2) suy ra góc KAI=2*90=180 độ
=>K,A,I thẳng hàng
c: Ta có; AK=AN
AI=AN
DO đó; KA=AI
=>A là trung điểm của KI
a) Xét ΔBAC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔBAC(đ/n đường trung bình của tam giác)
\(\Rightarrow MN=\frac{1}{2}AC\) và MN//AC(định lí 2 về đường trung bình của tam giác)
Ta có: \(MN=\frac{1}{2}AC\)(cmt)
mà \(AQ=\frac{1}{2}AC\)(Do Q là trung điểm của AC)
nên MN=AQ
Xét tứ giác MHQA có MN=AQ(cmt) và MN//AQ(cmt)
nên MHQA là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{MAQ}\)=90 độ(GT)
nên MHQA là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)
Nối AN
Ta có : N và I đối xứng với nhau qua M(GT)
mà M\(\in BA\left(gt\right)\)
nên I và N đối xứng với nhau qua BA
\(\Rightarrow\)BA là đường trung trực của IN
hay MA là đường trung trực của IN
xét \(\Delta IAN\) có
MA là đường trung trực của IN(cmt)
nên \(\Delta IAN\) cân tại A(định lí tam giác cân)
Ta có: \(\Delta IAN\) cân tại A(cmt)
mà AM là đường trung trực của \(\Delta IAN\)(cmt)
nên AM cũng là đường phân giác của \(\Delta IAN\)(định lí tam giác cân)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{IAN}\)
\(\Rightarrow\) \(\widehat{IAM}=\widehat{NAM}\)
Ta có : N và K đối xứng với nhau qua Q(GT)
mà Q\(\in AC\left(gt\right)\)
nên K và N đối xứng với nhau qua CA
\(\Rightarrow\)CA là đường trung trực của KN
hay QA là đường trung trực của KN
xét \(\Delta NAK\) có
QA là đường trung trực của KN(cmt)
nên \(\Delta NAK\) cân tại A(định lí tam giác cân)
Ta có: \(\Delta NAK\) cân tại A(cmt)
mà AQ là đường trung trực của \(\Delta NAK\)(cmt)
nên AQ cũng là đường phân giác của \(\Delta NAK\)(định lí tam giác cân)
\(\Rightarrow\) AQ là tia phân giác của \(\widehat{KAN}\)
\(\Rightarrow\) \(\widehat{NAQ}=\widehat{KAQ}\)
Ta có: \(\widehat{IAK}=\widehat{IAM}+\widehat{MAN}+\widehat{NAQ}+\widehat{KAQ}\)
\(=2\cdot\widehat{MAN}+2\cdot\widehat{QAN}\)
\(=2\left(\widehat{MAN}+\widehat{NAQ}\right)=2\cdot90\) độ=180 độ
vậy: 3 điểm I,A,K thẳng hàng (1)
c) Ta có: AI=AN(do ΔAIN cân tại A)
AN=AK(do ΔANK cân tại A)
Do đó: AI=AK(2)
Từ (1) và (2) suy ra: A là trung điểm của IK
hay I và K đối xứng với nhau qua A
Bạn tự vẽ hình nhé!
c) Kẻ IH//BK ( K\(\in\) DC)
=> IH//NK
Xét \(\Delta\) BKC có:
IH//BK
BI = CI ( I là trung điểm của BC)
=> KH = CH (1)
Xét \(\Delta\) IDH có:
IH//NK
IN = DN ( D là điểm đối xứng của I qua N)
=> KH = KD (2)
Từ (1) và (2) suy ra :
KH = CH = KD = \(\frac{1}{2}\) DC
=> \(\frac{DK}{DC}\) = \(\frac{1}{3}\) ( đpcm)
XONG !!!