\(\widehat{BAC}\). M,N là hình chiếu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

A B C D M N E F K I O H

a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB =>  \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)

Lại có:  DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)

Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)

hay \(EF\)//\(BC\)(đpcm)

b) Dễdàng c/m được: Tứ giác AMDN là hình vuông =>  AM=MD=DN=AN

Gọi giao điểm của AE và FM là O

Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)

Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)

Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.

Xét \(\Delta\)AME và \(\Delta\)MDF:

AM=MD

^AME=^MDF         => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)

EM=DF (cmt)

Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900

Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE

Tương tự ta c/m được EN vuông góc với AF 

=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K

Vậy K là trực tâm tam giác AEF (đpcm).

c) Gọi BI giao AD tại H

K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC

hay AK vuông góc với BD

Xét tam giác BAD:

AK vuông góc BD

DM vuông góc AB          => I là trực tâm tam giác BAD

AK cắt DM tại I

=> BI vuông góc AD => IH vuông góc với AD. 

Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H

=> ^HID = 450 => ^BID=1350.

Vậy ^BID=1350.