\(\widehat{B}\)=60. Kẻ đường cao AH và trung tuyến AM. Tín...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B H M C 60

Ta thấy AM là trung tuyến mà vuống tại A

=> A= 90 độ 

Vì là trung tuyến 

=> CAM= 45

chi mk nha 

ko biết đúng ko nữa mik chỉ mới hc lp 6

4 tháng 2 2017

A B C H M

\(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

             Mà góc A=90góc B=600

\(\Rightarrow\widehat{C}=30^0\)

\(\Delta ABC\)vuông tại A\(\Rightarrow\)AM=\(\frac{BC}{2}\)

Mà BM=MC=\(\frac{BC}{2}\)

\(\Rightarrow\Delta AMC\)cân tại M

\(\Rightarrow\widehat{MAC}=\widehat{MCA}\)

Mà \(\widehat{MCA}=30^0\)

\(\Rightarrow\widehat{MAC}=30^0\)

a) Xét ∆ vuông ABC có 

AM là trung tuyến 

=> AM = BM = CM 

=> ∆AMC cân tại M 

=> MAC = MCA 

Xét ∆ABH có : 

BHA + BAH + ABH = 180° 

=> BAH + ABH = 90° 

Xét ∆ABC có : 

ABC + BCA + BAC = 180° 

=> ABC + ACB = 90° 

=> BAH = MCA 

Mà MAC = MCA (cmt)

=> BAH = MAC 

b) Gọi I là giao điểm DE và AH 

Xét tứ giác DHEA có : 

BAC = 90° (gt)

MDA = 90° ( MD\(\perp\)AB )

HEA = 90° ( HE\(\perp\)AC)

=> DHEA là hình chữ nhật 

=> I là trung điểm DE và HA 

=> DI = IA 

=> ∆IDA cân tại I

=> IDA = IAD (1)

Vì MAC = MCA (2) (cmt)

Ta có : 

DAI + MAC = 90° 

MCA + MAC = 90° 

=> DAI = MCA ( cùng phụ với MAC )(3)

Từ (1) (2)(3) 

=> DAI = MAC = MCA 

Vì I là trung điểm DE 

=> ∆IAE cân tại I 

=> IAE = IEA 

Gọi giao điểm DE,AM là O 

Xét ∆ADE có : 

DAE + ADE + DEA = 180° 

=> ADE + DEA = 90° .

Mà IAE = IEA (cmt)

MAC = ADI (cmt)

=> MAE + IEA = 90° 

Xét ∆IAE có : 

IAE + IEA + AIE = 180° 

=> AIE = 90° 

Hay AM \(\perp\)DE(dpcm)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a,Ta có :

\(AH\perp BC\left(GT\right)\Rightarrow\widehat{HAB}+\widehat{B}=90^o\)

Mà \(\widehat{B}+\widehat{C=90^o}\)( Trong tam giác vuông 2 góc nhọn phụ nhau )

\(\Rightarrow\widehat{HAB}=\widehat{C}\left(1\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\)có :

 AM là trung tuyến ứng với cạnh huyền BC ( GT )

\(\Rightarrow AM=MC=\frac{1}{2}BC\)( Tính chất )

Vì \(AM=MC\)

\(\Rightarrow\Delta AMC\)cân tại M ( Định nghĩa )

\(\Rightarrow\widehat{MAC}=\widehat{C}\)( Tính chất ) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{HAB}=\widehat{MAC}\left(DPCM\right)\)

23 tháng 2 2019

khó quá 🤗 😎 🤣 🤣

25 tháng 2 2020

a) Xét tứ giác AMDN, ta có:

^A = ^N = ^M = 90o (gt)

Vậy tứ giác AMDN là hình chữ nhật.

b) *Xét △ABD, ta có:

K là trung điểm BD (gt)

I là trung điểm AD (gt)

⇒ KI là đường trung bình của △ABD.

⇒ KI // AB và KI = 12

AB. (1)

*Ta có:

DN ⊥ AC (gt)

AB ⊥ AC (△ABC vuông tại A)

⇒ DN // AB. (2)

Từ (1) và (2) suy ra KI // DN

*Xét △v ABC, ta có:

BD = CD (gt)

⇒ AD là đường trung tuyến

⇒ AD = BD = 12

AC

⇒ △ABD cân tại D

Mà DM ⊥ AB

⇒ DM là đường cao đồng thời là đường trung tuyến

⇒ MA = MB

*Ta có:

MA = 12

AB (cmt)

KI = 12

AB (cmt)

⇒MA = KI

Mà MA = DN (AMDN là hình chữ nhật)

Nên KI = DN

*Ta có:

KI // DN (cmt)

KI = DN (cmt)

Vậy INDK là hình bình hành

c) *Ta có:

KI //AM (KI // AB)

DM ⊥ AM (gt)

⇒KI ⊥ DM

*Xét tứ giác DIMK, ta có:

KI ⊥ DM (cmt)

Vậy DIMK là hình thoi.

d) Xét hình chữ nhật AMDN, ta có:

MN, AD là hai đường chéo

Mà I là trung điểm AD (gt)

Nên I là trung điểm MN

Vậy M, N đối xứng với nhau qua I.