Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như sai đề mình vẽ cái hình nhìn hơi kì Bạn xem lại đề đi
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
Ta có: \(\Delta\)ABH vuông tại H
=> \(AB^2=AH^2+BH^2\) ( định lí pi ta go ) (1)
\(\Delta\)CHD vuông tại H
=> \(CD^2=DH^2+CH^2\) ( định lí pi-ta-go) (2)
\(\Delta\)AHC vuông tại H
=> \(AC^2=AH^2+HC^2\)
\(\Delta\)BHD vuông tại H
=> \(BD^2=BH^2+DH^2\)
Từ (1) ; (2)
=> \(AB^2+CD^2=AH^2+HB^2+DH^2+CH^2\)
\(=\left(AH^2+CH^2\right)+\left(HB^2+DH^2\right)=AC^2+BD^2\)
Vậy \(AB^2+CD^2=AC^2+BD^2\)
Ta có : \(BE^2-EC^2=\left(BD^2-DE^2\right)-\left(DC^2-DE^2\right)\)
\(=BD^2-DC^2=BD^2-AD^2=AB^2\)
Vậy nên \(BE^2-EC^2=AB^2\)