Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ K H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2015

a) Ta có : AB vuông góc với AC 
HK vuông góc với AC 
 AB // HK 
b) ΔHAKHAI(c.g.c)(HA chung; HK = HI; AHKˆ=AHIˆ=900) 
 AK = AI  Tam giác AKI cân tại A 
c) Theo b : AIKˆ=AKIˆ 
Mà BAKˆ=AKIˆ (cặp góc so le trong, AB // HK)
Từ 2 điều trên suy ra : BAKˆ=AIKˆ(=AKIˆ) 
d) Tam giác IAK cân tại A có AH là đường cao ứng với đáy KI nên AH là đường phân giác xuất phát từ đỉnh A của tam giác AKI. 
 KACˆ=IACˆ 
ΔAICAKC(c.g.c) (AC chung; AK = AI (theo b); KACˆ=IACˆ(cmt))

1 đúng nhé

26 tháng 4 2016

a) ta có :AB vuông góc AC

  HK vuông góc AC

b) Xét tam giác AKH và tam giác AHI

AH là cạnh chung

H1 = H2

IH=HK (gt)

suy ra 2 tam giác trên bằng nhau

suy ra KA=AI

K^=I^ 

Vì KA=AI mà K = I nên tam giác KAI LÀ tam giác cân . Cân tại A

      

a) Ta có: AB⊥AC(ΔABC vuông tại A)

HK⊥AC(Gt)

Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)

b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có 

KH=IH(gt)

AH chung

Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)

Suy ra: AK=AI(hai cạnh tương ứng)

Xét ΔAKI có AK=AI(cmt)

nên ΔAKI cân tại A(Định nghĩa tam giác cân)

28 tháng 2 2021

a) sử dụng tc: Từ vuông góc đến //

b)tam giác KHA= tam giác IHA(c.g.c)

=> AK=AI

=> góc AKI=góc AIK

vì AK=AI=> tam giác AKI cân

c) vì AB//HK=> góc BAK=góc AKI(so le trong) 

  góc BAK=góc AKI

 mà góc AKI=góc AIK(cmt)                

 d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực 

tam giác AKC = tam giác AIC(c.c.c)

27 tháng 4 2018

A B C H K I

mk vẽ ko có kí hiệu bn thông cảm

a) dễ thấy AB // HK ( vì cùng vuông góc với AC)

b) Vì \(AC\perp KI\)tại H và \(HK=HI\)nên AC là đường trung trực của KI

hay AH là đường trung trực của HI hay tam giác AKI cân tại A

c) Vì tam giác AKI cân tại A nên \(\widehat{AKI}=\widehat{AIK}\)

Mà \(\widehat{BAK}=\widehat{AKI}\)(2 góc so le trong)

=> \(\widehat{AIK}=\widehat{BAK}\)

8 tháng 2 2019

A B C K H I

a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có 

\(AB^2+AC^2=BC^2\)

\(3^2+4^2=BC^2\)

\(9+16=BC^2\)

\(25=BC^2\)

\(\Rightarrow BC=5cm\)

b, Ta có :

\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)

\(\Rightarrow HK//AB\left(\perp AC\right)\)

c, Xét tam giác vuông AKH và tam giác vuông  AIH có:

AH : cạnh chung

HI=HK(GT)

=>  tam giác vuông AKH = tam giác vuông  AIH ( 2 cạnh góc vuông )

=>  AK = AI ( 2 cạnh tương ứng )

=> tam giác AKI cân tại A(AK = AI  : 2 CẠNH BÊN)  

d, ta có tam giác AKI cân tại A( cmt )

\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2  góc ở đáy)              (1)

lại có HK // AB ( cmt)

=>\(\widehat{BAK}=\widehat{AKI}\)(   2 góc slt)                (2)

từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)

e, ta có tam giác vuông AKH = tam giác vuông  AIH (cmt)

\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)

xét tam giác AIC và tam giác AKC có :

AK=AI(GT)

AC: cạnh chung

\(\widehat{KAH}=\widehat{IAH}\)(CMT)

=> tam giác AIC = tam giác AKC (C-G-C)

mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép 

Câu 5 (bài cuối cùng ý)

8 tháng 2 2019

bài này tao làm khác mày cơ 

13 tháng 5 2022

A B C K H I

a/ Ta có

\(AB\perp AC\left(gt\right)\)

\(HK\perp AC\left(gt\right)\)

=> AB//HK (cùng vuông góc với AC)

b/ Xét tg AKI có

\(AH\perp HI\) => AH là đường cao của tg AKI

HK=HI (gt) => AH là trung tuyến của tg AKI

=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

c/ Ta có

tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)

AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)

\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )

d/ Xét tg CKI có 

\(CH\perp KI\) => CH là đường cao của tg CKI

HK=HI => CH là trung tuyến của tg CKI

=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

Xét tg AIC và tg AKC có

tg AKI cân tại A (cmt) => AI=AK

tg CKI cân tại C (cmt) => CI=CK

AC chung

=> tg AIC = tg AKC (c.c.c)

29 tháng 11 2019

B A C H E I D K

\(a)\)Xét \(\Delta ABH\) và \(\Delta KIH\)  có:

\(HA=HK\left(gt\right)\)

\(\widehat{BHA}=\widehat{KHI}\left(đ^2\right)\)

\(HB=HI\left(gt\right)\)

\(\Rightarrow\Delta AHB=\Delta KIH\left(c.g.c\right)\)

\(b)\widehat{BAH}=\widehat{HKI}\left(\Delta AHB=\Delta KIH\right)\)

Mà hai góc ở vị trí so le trong

\(\Rightarrow AB//KI\)

\(c)AB\perp AC\)

\(AB//KI\)

\(\Rightarrow KI\perp AC\)

\(\Rightarrow IE\perp AC\)

\(\Rightarrow IK\equiv IE\)

\(\Rightarrow K,I,E\) thẳng hàng

\(d)\)Sai đề