Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
B C A M H K N D O I
a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.
Khi đó hai đường chéo bằng nhau nên BM = HK.
b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.
Vậy thì K là trung điểm BC.
Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.
Lại có MN vuông góc BC nên BMCN là hình thoi.
Dễ thấy rằng MK = AB/2 hay MN = AB.
Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.
Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.
c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.
Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.
Vậy nên BM giao AM tại trung điểm mỗi đoạn.
Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.
d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.
Ta có: do KM // AB, áp dụng Talet:
\(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)
\(\Rightarrow IM=2OM\)
Áp dụng Talet cho tam giác AND và ADC ta có:
\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)
Tự vẽ hình ...
a, Xét tứ giác ANCM có:
AI = CIMI = NI ( đối xứng)
Mà: AC cắt MN tai J
Nên: tứ giác ANCM là hình bình hành
Xét hình bình hành ANCM cógóc AMC = 900
=> hình bình hành ANCM là hình chữ nhật
b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến
=> AM là đường cao
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Xét tam giác AMB có góc AMB = 900
MK là đường trung tuyến ứng vs cạnh huyền AB
\(\Rightarrow MK=\frac{1}{2}AB\)(1)
Mà: K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)
Từ (1), (2)=> MK = AK = BK (3)
Chứng minh tương tự ta có :
\(MI=AI=CI=\frac{1}{2}AC\)(4)
Mà: AB = AC( tam giác ABC cân) (5)
Từ (3), (4),(5)
=> MI = AI = CI = MK = AK = BK
Xét tứ giác AKMI có:AK = KM = MI = AI
=> tứ giác AKMI là hình thoi
c, Ta có : AMCN là HCN
Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M
hc tốt ##