K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

loading...  loading...  loading...  

21 tháng 12 2023

loading... a) Do MN ⊥ AB (gt)

AC AB (do ∆ABC vuông tại A)

⇒ MN // AC

Tứ giác ANMC có:

MN // AC (cmt)

⇒ ANMC là hình thang

Mà ∠CAN = 90⁰

⇒ ANMC là hình thang vuông

b) ∆ABC có:

MN // AC (cmt)

M là trung điểm của BC

⇒ N là trung điểm của AB

Do MN ⊥ AB (gt)

⇒ MK ⊥ AB

Tứ giác AKBM có:

N là trung điểm của AB (cmt)

N là trung điểm của MK (gt)

⇒ AKBM là hình bình hành

Mà MK ⊥ AB (cmt)

⇒ AKBM là hình thoi

c) Để AKBM là hình vuông thì

AM ⊥ MB

⇒ AM ⊥ BC

⇒ AM là đường cao của ∆ABC

Mà AM là đường trung tuyến của ∆ABC (do M là trung điểm của BC)

⇒ ∆ABC có AM vừa là đường cao, vừa là đường trung tuyến

⇒ ∆ABC cân tại A

Mà ∆ABC vuông tại A (gt)

⇒ ∆ABC vuông cân tại A

Vậy để AKBM là hình vuông thì ∆ABC vuông cân tại A

16 tháng 10 2016

Hình học lớp 8

a) Tam giác ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AM⊥BC

Tứ giác AMCK có : I là trung điểm của đường chéo MK

                              I là trung điểm của đường chéo AC

=> AMCK là hình bình hành

mà góc AMC bằng 90 độ

=> AMCK là hình chữ nhật

b) Ta có: AK =MC ( 2 cạnh đối trong hình chữ nhật)

mà MC=MB ( M là trung điểm của BC)

=> AK=MB

Ta có: AK//MC( 2 cạnh đối trong hình chữ nhật)

mà MC và MB là 2 tia đối

=> AK//MB

Tứ giác AKBM có: AK=MB

                                AK//MB

=> AKBM là hình bình hành

c) Tứ giác ABEC có: M là trung điểm của đường chéo AE

                                    M là trung điểm của đường chéo BC

=> ABEC là hình bình hành

mà AE⊥BC( cmt)

=> ABEC là hình thoi

                                   

                             

15 tháng 12 2014

Hình bạn có thể tự vẽ nha

 a)  Tứ giác AMCK là hình gì?Vì sao?

M,K đối xứng nhau qua I

=> I là trung điểm của MK (1)

I là trung điểm của AC (gt)(2)

(1)(2)=> AMCK là hình bình hành (3)

Tam giác ABC cân tại A có: AM là trung tuyến (gt)

=> AM vừa là trung tuyến vừa là đường cao (t/c)

=>AM vuông góc với BC

=> Góc BMC=90(4)

(3)(4)=> AMCK là hình chữ nhật(dhnb)

b) C/m ABEC là hình thoi:

AM=ME(gt)(5)

 M nằm giữa A và E(6)

(5)(6)=>M là trung điểm AE(7)

M là trung điểm BC(8)

(7)(8)=> ABEC là hình bình hành(9)

AM vuông góc với BC,M thuộc AE=>AE vuông góc với BC(10)

(9)(10)=> ABEC là hình thoi (dhnb)

 

 

 

 

 

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

=>AMCK là hình chữ nhật

b: Xet tứ giác ABMK có

AK//MB

AK=MB

=>ABMK là hình bình hành

c; Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

AB=AC

=>ABEC là hình thoi