Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C N M E F I B D
Hình nè,nhìn rồi giải nha
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)
Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)
b) Xét \(\Delta BIM\)và \(\Delta BCA\)
Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)
\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow BI\text{.}BA=BM.BC\)
C H I B D A
A M N B C H K
a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC
tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )
suy ra BH = CK
b) tam giác ABN = tam giác ACM ( c.g.c )
suy ra BN = CM
Dễ thấy MN // BC
suy ra MN = HK ( tính chất đoạn chắn )
Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )
Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH
2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a, Xét Tam giác MBC có góc BMC lớn nhất vì là góc tù
=>BC>MC>BM
còn câu B bạn viết gì mình khong hiểu