Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN

Vì ˆCMBCMB^ là góc ngoài của tam giác AMC, nên:
ˆCMB=ˆCAB+ˆMCA=90độ+ˆMCACMB^=CAB^+MCA^=90độ+MCA^
⇒ˆCMB⇒CMB^ là góc tù
Mà trong tam giác, cạch đối diện với góc vuông hoặc góc tù là cạnh lớn nhất
⇒{BC>MCBC>MB⇒{BC>MCBC>MB (BC là cạnh đối diên góc CMB) (đpcm)
Chúc bn học tốt!!!

Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC) Từ đây suy ra . Lại có M là trung điểm của AC nên . |
Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM (1). Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra (2) Lại có AM = MC (3). (4) Từ (2), (3) và (4) suy ra (c.g.c) Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm). |
góc AMB<90 độ
=>góc NMB>90 độ
=>BM<BN
góc ANB<90 độ
=>góc BNC>90 độ
=>BN<BC
=>BM<BN<BC