K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
28 tháng 2 2019

A B C M H N

Ta có:

BM=BA

=> Tam giác ABM cân tại B

=> \(\widehat{BAM}=\widehat{BMA}\)

mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{BMA}+\widehat{MAC}=90^o\)

mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)

=> \(\widehat{HAM}=\widehat{MAC}\)(1)

Ta có: AH=AN (2)

AM chung (3)

=>Tam giác AHM=ANM

=> \(\widehat{ANM}=\widehat{AHM}=90^o\)

=> AC vuông MN

b) => Tam giác MNC vuông tại N có cạnh huyền MC

=> MC>NC

=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC

=> dpcm

18 tháng 4 2020

Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

1 tháng 6 2017

Ta có hình vẽ :

A B C M N

Ta có:

\(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-100^0}{2}=40^0\) ( hai góc đáy của tam giác cân ) (1)

Theo bài ra ta lại có:

AM=AN

=> \(\Delta AMN\) cân tại A ( trong tam giác có 2 góc bằng nhau )

\(\Rightarrow\widehat{AMN}=A\widehat{NM}=\dfrac{180^0-\widehat{A}}{2}=40^0\) ( hai góc đáy của tam giác cân) (2)

Từ (1) và (2) suy ra:\(\widehat{B}=\widehat{AMN}\)

=> MN//BC ( vì có cặp góc đồng vị )

(đ.p.c.m)

14 tháng 3 2017

3b)

Ta có tg BNK vuông tại K ->BN>BK

Ta có IK=MN(tính chất đoạn chắn)

Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK

Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2