Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C D E
Xét hai tam giác vuông ABD và EBD có:
BD: cạnh chung
góc ABD = góc EBD
=> tam giác ABD = tam giác EBD
=> AB = BE (hai cạnh tương ứng)
hình tự vẽ: Xét t/g ABD và t/g BDE có:
góc ABD= góc DBE (gt)
góc A= góc E (=90o)
BD là cạnh chung
\(\Rightarrow\)T/g ABD= t/g BDE ( cạnh huyền-góc nhọn )
\(\Rightarrow\)AB=BE (hai cạnh tương ứng ).
Co tam giác ABD vuông tại A ( goc BAD = 90 độ Có DE vuông góc BC(gt) => tam giác EBD buông tại E Xét tam giác vuông ABD và tam giác vuông EBD có BD chung Góc ABD = góc EBD ( BD là f/g của góc ABC) => tam giác vuông ABD = tam giác vuông EBD ( cạnh huyền- góc nhọn) => AB= BE( 2 cạnh tương ứng)
a) Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại A ta có:
\(\widehat{A}=\widehat{E}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác của góc B)
\(\Rightarrow\Delta ABD=\Delta EBD\) (dpcm)
b) Ta có: \(\Delta ABD=\Delta EBD\)
\(\Rightarrow AB=BE\) (hai cạnh tương ứng)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
Ta có hình vẽ:
A B C D H E d
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o
Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)
=> ABC = 90o - ACB
=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)
=> CBD = 45o - \(\frac{ACB}{2}\)
Vì \(CH\perp DE\) nên CHD = 90o
Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)
=> 45o - \(\frac{ACB}{2}\) + BCH = 90o
=> BCH - \(\frac{ACB}{2}\) = 45o
=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)
=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
=> BCH - ACB = \(\frac{DCE}{2}\)
=> \(DCH=\frac{DCE}{2}\)
=> CH là tia phân giác của góc DCE (đpcm)
bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r
A B C H E D
Có thể thấy rằng DC + DE = EC < BC mà BC < AB + AC (bất đẳng thức tam giác) nên AB + AC > DC + DE.
Đề sai rồi bạn.
gócDCB=gócEBC=góc1/2ACB=góc1/2ABC
a)xét tg DCB và tg EBC có
BC là cạnh chung
góc B=góc C
góc DCB=góc EBC
suy ra tg DCB = tg EBC(g.c.g)
suy ra CD=BE(hai cạnh tương ứng)
xét tgADC và tgAEB có
góc A là góc chung là góc vuông
AB=AC
DC=EB
suy ra tgADC = tgAEB (ch.cgv)
suy ra AD=AE(hai cạnh tương ứng)
câu b và câu c k xong đi rồi nói
Xét hai tam giác vuông ABD và EBD, ta có:
∠(BAD) =∠(BED) =90o
Cạnh huyền BD chung
∠(ABD) =∠(EBD) (Do BD là tia phân giác của góc ABC)
Suy ra: Δ ABD= Δ EBD(cạnh huyền, góc nhọn)
Vậy BA = BE ( hai cạnh tương ứng)