Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
góc CAN + BAM + BAC = 180 độ
mà góc BAC = 90 ( tam giác ABC vuông cân tại A )
\(\Rightarrow\)BAM + CAN = 90 độ ( 1 )
Xét tam giác MBA vuông tại M , ta có:
BAM + ABM = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\)CAN + BAM = BAM + ABM
\(\Rightarrow\)CAN = ABM
Xét tam giác vuông MAB và tam giác vuông NCA , ta có :
AB = AC ( tam giác ABC vuông cân tại A )
CAN = ABM
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )
b, Vì \(\Delta MAB=\Delta NCA\)(CMT)
\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )
Xét \(\Delta MBA\)vuông tại M , ta có :
\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )
mà AM = CN ( CMT )
\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)
a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)
; BM | d ; CN | d => BM // CN (2)
Từ (1) và (2) => BM = CN (tính chất đoạn chắn)
Xét hai tam giác vuông MAB và NCA có :
AB = DC (do tam giác ABC vuông cân tại A)
BM = CD (cmt)
\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)
b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)
\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)
; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)
\(\Rightarrow\) Tam giác MAB vuông cân tại M
\(\Rightarrow AM=AB\)
Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)
Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Ta có: ΔABM=ΔACN
nên \(\widehat{ABM}=\widehat{ACN}\)
c: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: KB=KC
nên K nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,K,I thẳng hàng
B C A D E M N I H K
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)