\(\sqrt{3}cm\) và I...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Giải:

a) Đồng dạng vì góc A = góc H = 90 độ

                           góc B chung

b) Vì AI là phân giác nên \(\frac{BI}{AB}=\frac{CI}{AC}\)

Suy ra \(\frac{AB}{AC}=\frac{BI}{CI}=\frac{2}{3}\)

Hay \(\frac{10}{CI}=\frac{2}{3}\)

Vậy CI = 15

Mik giải nhanh thôi còn bn tự trình bày lại sao cho đẹp

11 tháng 1 2017

Bạn tự vẽ hình nhé!

c) Kẻ IH//BK ( K\(\in\) DC)

=> IH//NK

Xét \(\Delta\) BKC có:

IH//BK

BI = CI ( I là trung điểm của BC)

=> KH = CH (1)

Xét \(\Delta\) IDH có:

IH//NK

IN = DN ( D là điểm đối xứng của I qua N)

=> KH = KD (2)

Từ (1) và (2) suy ra :

KH = CH = KD = \(\frac{1}{2}\) DC

=> \(\frac{DK}{DC}\) = \(\frac{1}{3}\) ( đpcm)

XONG !!!okok

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

5 tháng 6 2020

a) Xét △BEA và △BAC có :

           \(\widehat{E}=\widehat{A}\left(=90^o\right)\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\)△BEA ~ △BAC (g.g)

b) +) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=BE.BC\)

\(\Rightarrow BE=1,8\left(cm\right)\)

+) Áp dụng định lý Pythagoras vào △ABC, ta được :

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

+) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)

\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)

c) Xét △BAI và △BEK có :

           \(\widehat{A}=\widehat{E}=\left(90^o\right)\)

           \(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)

\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)

\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)

\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)

d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC

\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)

Vì Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)

\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)