Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại D. Trên cạnh BC lấy
điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔBAD vuông tại A

=>BD là cạnh huyền

=>BD>BA

b: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

c: Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC tại E

Ta có: ΔBAD=ΔBED

=>DA=DE

mà DE<DC(ΔDEC vuông tại E)

nên DA<DC

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

Ta có: NF=NC

=>N nằm trên đường trung trực của CF(2)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,N thẳng hàng

25 tháng 4 2019

B A C D E F S

a)   Tam giác ABD và EBD có:

Góc ABD = EBD (BD là phân giác)

Cạnh BA = BE (gt)

Cạnh BD chung

=> Tam giác ABD = EBD (c-g-c)   (*)

b)  Từ (*) => góc BED = 90 độ (= góc BAD)

=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE  (1)

mà từ (*) => DE = AD  (2)

Từ (1) và (2) => DC > AD

c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm

Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC

=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.

Vậy B, D, S thẳng hàng.

26 tháng 3 2024

α⚽

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj

13 tháng 2 2021

?????????????????