Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác ABD và tam giác EBD có: BD chung
góc ABD = góc EBD do BD là pg của góc ABC (gt)
AB = BE (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> góc DAB = góc DEB (đn)
mà góc DAB = 90
=> góc DEB = 90
tam giác ABD = tam giác EBD => DA = DE
xét tam giác MDA và tam giác CDE có : góc DAM = góc DEC = 90
goc MDA = góc CDE (đối đỉnh)
=> tam giác MDA = tam giác CDE (cgv-gnk)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét: tam giác ABD và tam giác EBD có:
.AB= BE (giả thiết)
.góc B1= góc B2 (giả thiết)
.BD cạnh chung
suy ra: tam giác ABD= tam giác EBD (c-g-c)
b) Xét: tam giác ADM vuông tại A và tam giác CDE vuông tại E có:
.MD=ME ( giả thiết)
.góc D1= gócD2 (đối đỉnh)
suy ra: tam giác ADM= tam giác EBD ( cạnh huyền- góc nhọn)
Ta có : tam giác ADM= tam giác EBD (cmt)
suy ra:EC= AM (2 cạnh tương ứng)
c) Xét: tam giác AEC vuông tại A và tam giác EAM vuông tại E có:
.AE=EM (giả thiết)
. góc C= góc M (giả thiết)
suy ra : tam giác AEC= tam giác EAM (c-h-g-n)
Ta có: tam giác AEC= tam giác EAM (cmt)
suy ra: góc AEC = góc EAM( 2 góc tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh :tan giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. chứng minh : EC = AM
c) Nối AE. Chứng minh : góc AEC = góc EAM
b,VÌ \(\Delta ABD=\Delta EBD\)nên
AD=DE ( hai cạnh tương ứng)
Xét \(\Delta MAD\)và \(\Delta DEC\)có:
\(\widehat{MAD}=\widehat{DEC}=90^o\)
AD=DE (cmt)
\(\widehat{ADM}=\widehat{ADC}\)( 2 gíc đối đỉnh)
=> AM=EC( hai cạn tương ứng ) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
`Answer:`
a. Vì `\triangleABC` vuông tại `A` nên theo định lí Pytago, ta có:
\(AB^2=BC^2-AC^2\Leftrightarrow AB^2=13^2-12^2\Leftrightarrow AC^2=169-144=25\Leftrightarrow AC=5cm\)
b. Xét `\triangleABD` và `\triangleEBD:`
`BD` chung
`BA=BE`
`\hat{ABD}=\hat{EBD}`
`=>\triangleABD=\triangleEBD(c.g.c)`
c. Theo phần b. `\triangleABD=\triangleEBD`
`=>\hat{BAD}=\hat{BED}=90^o`
`=>DE⊥BC`
d. Xét `\triangleADF` và `triangleEDC:`
`AD=DE`
`\hat{DAF}=\hat{DEC}=90^o`
`\hat{ADF}=\hat{EDC}`
`=>\triangleADF=\triangleEDC(g.c.g)`
`=>AF=BC`
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
![](https://rs.olm.vn/images/avt/0.png?1311)
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).