Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
a, Xét tam giác BMC và tam giác AMD có :
MB=MD
góc BMC=góc DMA(đối đỉnh)
MA=MC (gt)
=> tam giác BMC=tamgiacs DMA
=> AD=BC
b, Chứng minh tam giác BMA=tam giác DMC
=>góc BAC= góc DCM(2 goác tương ứng )
=> CD vuông góc với AC
c, Vì BN//AC
BA vuông góc AC
NC vuông góc AC
=> BA=NC
Xét tam giác BAM=tam giác NCM(cạnh huyền-cạnh góc vuông)
=> ĐPCM
a,Có BC^2=5^2=25
AB^2+AC^2=3^2+4^2=25
suy ra BC^2=AB^2+AC^2
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A.
Câu 1:
d A B C D E
Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o
Ta có:
\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o
=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)
Áp dụng tính chất tam giác vuông ta có:
\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)
Từ (1) và (2) suy ra:
\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)
=> \(\widehat{CAE}\) = \(\widehat{DBA}\)
Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:
BA = AC (giả thiết)
\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)
=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)
=> DB = EA và DA = EC (2 cặp cạnh tương ứng).
Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html
A E D M B N C
a) Xét \(\Delta\)ABM và \(\Delta\)CDM có:
AM = CM (suy từ giả thiết)
\(\widehat{AMB}\) = \(\widehat{CMD}\) (đối đỉnh)
BM = DM (giả thiết)
=> \(\Delta\)ABM = \(\Delta\)CDM (c.g.c)
b) Xét \(\Delta\)AMD và \(\Delta\)CMB có:
AM = CM (suy từ gt)
\(\widehat{AMD}\) = \(\widehat{CMB}\) (đối đỉnh)
MD = MB (gt)
=> \(\Delta\)AMD = \(\Delta\)CMB (c.g.c)
=> \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)
mà 2 góc ở vị trí so le trong nên AD // BC.
c) Vì \(\Delta\)AMD = \(\Delta\)CMB (câu b)
nên \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)
hay \(\widehat{EDM}\) = \(\widehat{NBM}\)
Xét \(\Delta\)EDM và \(\Delta\)NBM có:
\(\widehat{EDM}\) = \(\widehat{NBM}\) (chứng minh trên)
DM = BM (gt)
\(\widehat{EMD}\) = \(\widehat{NMB}\) (đối đỉnh)
=> \(\Delta\)EDM = \(\Delta\)NBM (g.c.g)
=> EM = NM (2 cạnh tương ứng)
Do đó M là trung điểm của NE.
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)