Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của MA vẽ MD sao cho MA = MD (như hình vẽ)
A B C M D
Xét Δ BMD và Δ CMA có:
BM = CM (gt)
BMD = CMA (đối đỉnh)
MD = AM (cmt)
Do đó, Δ BMD = Δ CMA (c.g.c)
=> BD = AC (2 cạnh tương ứng), BDM = CAM (2 góc tương ứng)
Mà BDM và CAM là 2 góc so le trong => BD // AC
Mà \(AB\perp AC\) nên \(AB\perp BD\)
Xét Δ ABD vuông tại B và Δ BAC vuông tại A có:
BD = AC (cmt)
AB là cạnh chung
Do đó, Δ ABD = Δ BAC (2 cạnh góc vuông)
=> AD = BC (2 cạnh tương ứng)
Mà \(AM=\frac{1}{2}AD\) do AM = MD
=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)
GT: Δ ABC vuông tại A
BM = CM
D ϵ tia đối của tia MA sao cgo MA = MD
KL: AD = BC
\(AM=\frac{1}{2}BC\)
Ta có hình vẽ:
A B C M D
Nối đoạn BD
Xét Δ BMD và Δ CMA có:
BM = CM (gt)
BMD = CMA (đối đỉnh)
MD = MA (gt)
Do đó, Δ BMD = Δ CMA (c.g.c)
=> BD = AC (2 cạnh tương ứng) và BDM = MAC (2 góc tương ứng)
Mà BDM và MAC là 2 góc so le trong nên BD // AC
=> BAC + ABD = 180o (trong cùng phía)
=> 90o + ABD = 180o
=> ABD = 180o - 90o = 90o = BAC
Xét Δ ABD và Δ BAC có:
BD = AC (cmt)
ABD = BAC = 90o
AB là cạnh chung
Do đó, Δ ABD = Δ BAC (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Mà AM = MD = \(\frac{1}{2}AD\) (2)
Từ (1) và (2) => \(AM=\frac{1}{2}BC\left(đpcm\right)\)
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
Trên tia đối của MA lấy điểm D sao cho MD=MA
xét tam giác AMB và tam giác DMC có:
MB=MC(gt)
góc AMB=DMC(2 góc đối đỉnh)
MA=MD( do cách vẽ)
=>tam giác AMB=DMC(c-g-c)
=> AB=DC và góc BAM=MDC=>AB//CD( vì có cặp góc so le trong bằng nhau)
vì AC vuông góc AB(gt) nên AC vuông góc vs CD( quan hệ giữa tính song song và vuông góc)
xét tam giác ABC và CDA có
AB=CD 9(cmt)
góc A=C=90 độ
AC chung
=> tam giác ABC=CDA(c-g-c) suy raBC=AD. Vì AM=1/2AD nên AM=1/2BC