Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tứ giác ADME có:
\(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=90^0\)(gt)
=>ADME là hcn(Tứ giác có 3 góc vuông là hcn)
b)Có ADME là hcn(câu a)
=>ADME là h vuông
<=>AM là p/g của góc \(\widehat{DAE}\)(1)
mà \(\widehat{DAE}\)là \(\widehat{BAC}\)(2)
Từ (1);(2)
=>AM là p/g của \(\widehat{BAC}\)
mà AM là đường trung tuyến (gt)
=> \(\Delta ABC\)cân tại A
Vậy ADME là h vuông khi \(\Delta ABC\)cân tại A
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng