\(\in AC\)) của góc B, kẻ AI vuông g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

lời giải câu c) nè bn...

Hình thì bn tự vẽ nha....

c) Xét tam giác BAD và tam giác BED ta có:

+> BA=BE  (cmt câu b)

+> Góc ABD = góc EBD  (vì BD là phân giác của góc ABC)

+> Chung cạnh BD

=> Tam giác BAD = tam giác BED  (c-g-c)

=> góc BAD = góc BED

Mà góc BAD = 90độ

=> Góc BED =90 độ

=> Tam giác BED vuông tại E (ĐPCM)

Bn vẽ xg hình là nhìn ra ngay ý ạ....

Nếu thấy đúng tích cho mk nha...

15 tháng 12 2017

Câu c)   Bạn tự vẽ hình nha

Do BD là phân giác góc \(\widehat{ABC}\)

=> \(\widehat{DBC}=\widehat{DBA}\)

- Xét \(\Delta DBE\)và \(\Delta DBA\)

BD chung

\(\widehat{DBC}=\widehat{DBA}\)

BE = BA (câu b)

=> \(\Delta DBE\)\(\Delta DBA\)(c.g.c)

=> \(\widehat{BAD}=\widehat{BED}\)

Lại có \(\Delta ABC\)vuông tại A

=> \(\widehat{BAD}=90^o\)

=> \(\widehat{BED}=90^o\)

=> \(\Delta BED\)vuông tại E (đpcm)

26 tháng 4 2017

B A C D E F

a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:

\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung

\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)

b) Từ câu a  => AD = EB(2 cạnh tương ứng)

\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)

=> DF = DC (2 cạnh tương ứng)

=> \(\Delta FDC\)cân tại D

26 tháng 4 2017

Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi

Cách mình chứng minh góc DFC = góc FCD

Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D

=> D là trực tâm tam giác ABC

=> BD là đường cao thứ 3

=> BD vuông góc FC tại D

Xét tam giác BFC có BD vừa là phân giác vừa là đường cao

=> tam giác BFC cân tại B

=> góc BFC = góc BCF

Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)

Xét tam giác ADF và tam giác DEC có:

  góc ADF = góc EDC (đối đỉnh)

  góc DAF = góc DEC = 90 độ (gt)

  AD = DE (cmt)

=> tam giác ADF = tam giác EDC (g.c.g)

=> góc AFD = góc DCE (hai góc t.ứng)

Mà: góc BFC = góc BCF

=> góc DFC = góc DCF 

=> tam giác FDC cân tại F

Xong!! =)))

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

6 tháng 3 2018

A B C D E H I

XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)

    ^E=^D=\(90^0\)

      BC chung                =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)

     ^BCB=^EBC

=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD

ta lại có EB=DC mà AB=AC nên AD=AE

Xét \(\Delta AEI\)VÀ \(\Delta ADI\)

      AE=AD

      ^E=^D=\(90^0\)           =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)

        AI  chung                  =>^EAI=^DAI

XÉT \(\Delta ABH\)\(\Delta ACH\)

    AB=AC

    AH chung              =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

    ^EAI=^DAI           =>^AHB=^AHC

MÀ ^AHB  + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)

VẬY \(AH\perp BC=\left\{H\right\}\)

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân