Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự nghen:3333
a) Xét tam giác ABEvà tam giác HBE có
B1=B2(gt)
BE chung
BAE=BHE(=90 độ)
=> tam giác ABE= tam giác HBE( ch-gnh)
b) từ tam giác ABE= tam giác HBE=> AE=HE( hai cạnh tương ứng)
Xét tam giác AEK và tam giác HEC có
AEK=HEC( đối đỉnh)
AE=HE(cmt)
KAE=CHE(=90 độ)
=> tam giác AEK=tam giác HEC(gcg)
=> EK=EC( hai cạnh tương ứng)
c) vì tam giác EHC vuông tại H
=> áp dụng định lý pytago vào tam giác vuông EHC
=> EH^2+HC^2=EC^2
=> EC^2>EH^2
=>EC>AE( EH=AC)
d) từ tam giác BAE= tam giác BHE=> AB=HB( hai cạnh tương ứng)
Xét tam giác BAI và tam giác BHI có
B1=B2(gt)
BI chung
AB=HB(cmt)
=> tam giác BAI= tam giác BHI( cgc)
=> BIA=BIH( hai góc tương ứng)
mà BIA+BIH=180 độ( kề bù)
=> BIA=BIH=180/2=90 độ
=> BE vuông góc với AH
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có
gócABE = gócHBE ( BE là phân giác gócABH)
BE chung
\(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )
\(=>\)AE=EH ( 2 cạnh tương ứng)
b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có
AE=EH ( theo câu a)
góc AEK = HEC ( 2 góc đối đỉnh )
\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)
\(=>\)EK=EC ( 2 cạnh tương ứng )
a) tam giac ABE = tam giac HBE ( c=g=c) : AB= BE .( gt) BE= BE ( canh chung) goc ABE= goc HBE ( BE la tia phan giac)
b) ta co : BH=BA (gt)
EA=EH ( tam giac ABE= tam giac HBE)
===? B va E nam tren duong trung truc cua AH
---> BE la duong trung truc cua AH
c) cm tam giac EKA= tam giac ECH ( g-c-g) : AE= EH , goc KAE= goc EHC (=90) , goc AEK = goc HEC ( 2 goc doi dinh)
d) tu diem Eden duong thang HC ta co
EC la duong xien, EH la duong vuong goc ) EH vuong goc BC)
===> EH< EC ( quan he duong xien duong vuong goc)
ma EH=EA ( tam giac ABE = tam giac BEH )
nen AE < EC
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a, xét 2 tam giác vuông ABE và HBE có:
BE cạnh chung
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
=> tam giác ABE =tam giác HBE(CH-GN)
b) gọi O là giao điểm của BE và AH
xét tam giác OAB và tam giác OHB có:
OB chung
\(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)
AB=HB(theo câu a)
=> tam giác OAB=tam giác OHB(c.g.c)
=> OA=OH=> O là trung điểm của AH(1)
\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)
từ (1) và (2) => BE là trung trực của AH
c)xét 2 tam giác vuông EAK và HEC có:
AE=EH
\(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)
=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)
=> EK=EC
d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC
A B C E H K O
a,Xet tg ABE và tg HBE vuông tại A và H (=90)
Có : BE cạnh chung
góc BAE = góc HBE
=> tg ABE = tg BHE (gcg)
b, Xét tg ABI và tg BHI
Có : AB=BH ( tg ABE = tg BHE cmt )
BI cạnh chung
góc BAI = góc BHI
=> tg ABI = tg BHE(cgc)
=> IA=IH ( 2 cạnh tương ứng)
c, Xét tg AEK và tg CEH vuông tại A và H (=90)
Có : AE=EH ( tg ABE = tg HBE )
góc HEK = HEC (đđ)
=> tg AEK = tg CEH (gcg)
=> EK=EC ( 2 cạnh tương ứng)
d, Xét tg HEC có :
HE < EC (vì : HE là cạnh góc vuông , và EC là cạnh huyền )
Mà : HE = AE
Nên : AE<EC
đpcm
A B C I E K