K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Ôn tập: Tam giác đồng dạng

a, Vì ΔABC vuông tại A ⇒ \(\widehat{BAC}=90^0\)

Vì AH là đường cao của ΔABC

⇒ AH ⊥ BC

\(\widehat{H_1}=\widehat{H_2}=90^0\)

ΔABC và ΔHBA có

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BAC}=\widehat{H_1}=90^0\end{matrix}\right.\)

⇒ ΔABC ~ ΔHBA (g.g)

\(\widehat{C}=\widehat{A_1}\)

ΔABH và ΔCAH có

\(\left\{{}\begin{matrix}\widehat{H_1}=\widehat{H_2}=90^0\\\widehat{A_1}=\widehat{C}\end{matrix}\right.\)

⇒ ΔABH và ΔCAH (g.g)(đpcm)

b, Tính BC dựa vào định lí Pitago

Tính AH dựa vào diện tích tam giác

c, Vì ΔABC ~ ΔHBA

\(\frac{AB}{BC}=\frac{AH}{AB}\)

⇒ AB2 = BH . BC

\(\frac{AB^2}{BH.BC}=1\)

\(\frac{AB}{BH}.\frac{AB}{BC}=1\)

ΔABC có BE là đường phân giác

\(\frac{AB}{BC}=\frac{AE}{EC}\) (2)

ΔABH có BI là đường phân giác

\(\frac{AB}{BH}=\frac{AI}{IH}\)(3)

Từ (1), (2), (3) ⇒ \(\frac{AI}{IH}.\frac{AE}{EC}=1\)(đpcm)

4 tháng 4 2020

ko dup dau leu  leu

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{ACH}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)

hay AH=4,8(cm)

16 tháng 5 2017

A B D E C H

a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)

b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)

c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)

\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)

Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))

\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)

\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)

18 tháng 5 2017

Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v

11 tháng 4 2018

câu d dùng tính chất đường phân giác trong tam giác là ra  mà em!

EM là phân giác của tam giác ABE=>BM/AM=BE/AE

EN là phân giác của tam giác BEC =>CN/BN=EC/BE

=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1

21 tháng 8 2017

Cho tam giác ABC vuông tại A có đường cao AH

a) chứng minh tam giác AHB đồng dạng với tam giác ABC

b) Cho BC = 10cm AB = 6cm Tính AC, HB

c) Phân giác của góc ABC cắt AH tại F và cắt cạnh AC tại E. Chứng minh

FA/FH =EC/EA 

d) Đường thẳng qua C song song vs BE cắt AH tại K. CHứng minh: AF2 = FH x FK

chịu

botay.com.vn

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )

⇒Bc=10(cm)⇒Bc=10(cm)

Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)

⇒AD=AC−DC=8−5=3(cm)