Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABC~\Delta HBA\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Rightarrow\)\(AB^2=HB.BC\)
\(\Leftrightarrow\)\(6^2=HB.10\)
\(\Rightarrow\)\(HB=3,6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:
BC2=AB2+AC2
BC=10 cm
b)cm ▲HBA dồng dạng ▲ABC(g-g)
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)
thay số vào ta có : 62=BHx10
BH=3.6 cm
HC=BC-BH=10-3.6=6.4 cm
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)