ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Trên cạnh BC lấy điểm M sao c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

A B C M H N

Ta có:

BM=BA

=> Tam giác ABM cân tại B

=> \(\widehat{BAM}=\widehat{BMA}\)

mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{BMA}+\widehat{MAC}=90^o\)

mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)

=> \(\widehat{HAM}=\widehat{MAC}\)(1)

Ta có: AH=AN (2)

AM chung (3)

=>Tam giác AHM=ANM

=> \(\widehat{ANM}=\widehat{AHM}=90^o\)

=> AC vuông MN

b) => Tam giác MNC vuông tại N có cạnh huyền MC

=> MC>NC

=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC

=> dpcm

18 tháng 4 2020

Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

28 tháng 2 2019

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

14 tháng 3 2020

5234kg....................tạ   

6005dm2...............m2

4027mm.....................m ...................mm

4,25tan....................kg

32,9km2......................hm2

68dm2....................m2

28 tháng 2 2019

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo !

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

5 tháng 3 2017

theo minh la dap an A ;nho k minh nhe