K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

A B C D E F

Vì DE // AC Theo hệ quảTa lét ta có : \(\frac{DB}{AB}=\frac{DE}{AC}\Rightarrow\frac{AB-AD}{AB}=\frac{DE}{AC}\)

\(\Rightarrow\frac{AB-2}{AB}=\frac{2}{AC}\Rightarrow AB.AC-2AC=2AB\)

\(\Rightarrow AB.AC-2\left(AC+AB\right)=0\)(*)

Theo định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\)(**) 

Từ (*) ; (**) ta có hệ : \(\hept{\begin{cases}AB.AC-2\left(AC+AB\right)=0\\AB^2+AC^2=45\end{cases}}\)

bấm casio nhé, mode 9 _ 1 _ ấn hệ ra _ ''=''

26 tháng 6 2021

Đặt  \(\hept{\begin{cases}AB=x\\AC=y\end{cases}\left(x,y>0\right)}\)

Theo định lí Thales \(\frac{EF}{AB}=\frac{CF}{CA}\Rightarrow\frac{AB-EF}{AB}=\frac{CA-CF}{CA}\)

Hay \(\frac{x-2}{x}=\frac{2}{y}\Leftrightarrow xy=2\left(x+y\right)\left(1\right)\)

Theo định lí Pytagoras: \(AB^2+AC^2=BC^2\)hay \(x^2+y^2=45\left(2\right)\)

Từ (1),(2); ta có hệ phương trình: \(\hept{\begin{cases}xy=2\left(x+y\right)\\x^2+y^2=45\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\x^2+2xy+y^2-4\left(x+y\right)-45=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\\left(x+y\right)^2-4\left(x+y\right)-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x^2+y^2-45=0\end{cases}}\)(Vì x,y dương)

\(\Leftrightarrow\hept{\begin{cases}y=9-x\\x^2+\left(9-x\right)^2-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9-x\\x=6\left(h\right)x=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\left(h\right)\hept{\begin{cases}x=3\\y=6\end{cases}}\)

Vậy \(AB=3,AC=6\) hoặc \(AB=6,AC=3.\)

27 tháng 9 2015

B A C F D H E

Kẻ đường cao AH của tam giác ABC. Ta có: SADEF = 2.2=4 => SABC = 9. Ta có :\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3\sqrt{5}.AH=9\Rightarrow AH=\frac{6}{\sqrt{5}}\).

Áp dụng ĐL Py-ta-go ta tính được \(AE=\sqrt{2^2+2^2}=2\sqrt{2}>\frac{6}{\sqrt{5}}\Rightarrow E\ne H\Rightarrow\)Tam giác AEH vuông tại H.

Ta có: \(\sin AEH=\frac{AH}{AE}=\frac{3}{\sqrt{10}}\Rightarrow AEH\approx71^034'\)=>Góc ECA = 180o-góc EAC-góc AEC = 180o - 45o - 71o34' = 63o26'

\(\Rightarrow\sin BCA=\sin63^026'=\frac{AB}{BC}\approx0,894\Rightarrow AB\approx6\left(cm\right)\). Vận dụng ĐL Py-ta-go ta có:

\(AC=\sqrt{BC^2-AB^2}=3\)

29 tháng 8 2017

2) Sửa lại là: HE.AB+HF.BC=AH.BC

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.

Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh AC, AB.

Bài 3: Cho \(B=31+\dfrac{27}{15+\dfrac{7}{2008}}\) Tìm dãy số  \(b_0,b_1,b_2,...,b_n\) biết \(B=b_o+\dfrac{1}{b_1+\dfrac{1}{\dfrac{..........}{b_{n-1}+\dfrac{1}{b_n}}}}\)

Bài 4: Cho tam giác ABC, trên cạnh AB, AC, BC lần lượt lấy các điểm M, L, K sao cho tứ giác KLMB là hình bình hành. Biết \(S_{AML}=\text{42,7283}cm^2\)\(S_{KLC}=51,4231cm^2\) . Tính diện tích tam giác ABC.

Cứu mình với mọi người ơi!!!

2
31 tháng 7 2017

  4. Dễ thấy  \(\Delta AML\approx\Delta LKC\left(g-g\right)\)

\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)

\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)

Lại có  \(\Delta AML\approx\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)

\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)

31 tháng 7 2017

1. Ta có  \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)

Mặt khác  \(BC=\sqrt{11}\Rightarrow BH+CH=11\) 

\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)

\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\)  và  \(BH=\frac{77-11\sqrt{35}}{2}\)

Có BH, CH và BC tính đc AB, AC  \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)

Từ đó tính đc chu vi tam giác ABC.

2. Để cj gửi hình qua gmail cho

3. Chỉ còn cách làm từng bước thôi e

\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)

Để viết liên phân số, ta bấm phím tìm thương và số dư:

(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)

- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết  \(B=32+\frac{1}{1+...}\)

- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết  \(B=32+\frac{1}{1+\frac{1}{3+...}}\)

- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)

- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)

...

Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng  \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3

Kết quả:  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

24 tháng 6 2017

gọi D là tiếp điểm của đường tròn (K) trên BC . ta có DB = BE ; CD = CF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AB + BE = c + BD

AF = AC + CF = b + CD

\(\Rightarrow\) AE + AF = b + c + (BD + CD)

= a + b + c

ta lại có AE = AF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AF = \(\dfrac{a+b+c}{2}\) (đpcm)

b) BE = AE - AB = \(\dfrac{a+b+c}{2}\) - c = \(\dfrac{a+b-c}{2}\) (đpcm)

c) CF = AF - AC = \(\dfrac{a+b+c}{2}\) -b = \(\dfrac{a+c-b}{2}\) (đpcm)