K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

mk ko bt 123

15 tháng 5 2018

khó thế

11 tháng 3 2017

Tự vẽ hình nhé

a) t/g BAM = t/g BM'M (cạnh huyền-góc nhọn)

=> BA = BM' (2 cạnh t/ứ)

Gọi K là giao điểm của BM và AM'

t/g BAK = t/g BM'K (c.g.c)

=> BAK = BM'K (2 góc t/ứ)

=> 90o - BAK = 90o - BM'K

=> BAM - BAK = BM'M - BM'K

=> MAM' = MM'A

=> t/g AMM' cân tại M (dấu hiệu nhận biết t/g cân) 

Chứng minh tương tự với t/g còn lại

b) xem lại đề

11 tháng 3 2017

a.Xét tam giác ACN và N'CN có:

góc CAN = CN'N = 90*

CN là cạnh chung

góc NCA = NCN' (gt)

Suy ra :tam giác ACN = N'CN ( cạnh huyền góc nhọn )

Suy ra: NA = NN' ( hai cạnh tương ứng )

Vậy tam giác ANN' cân tại N 

Tương tự ta có tam giác AMM' cân tại M.

b. A B C M N M' N'

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
13 tháng 8 2018

Hình tự vẽ.

a) Xét \(Δ\)ABH vuông tại A và \(Δ\)MBH vuông tại M có:

BH chung

\(ABH=\widehat{MBH}\)(suy từ gt)

=> \(Δ\)ABH = \(Δ\)MBH (ch -gn)

b) Vì AB = BM nên ΔΔABM cân tại B

=> BAMˆBAM^ = BMAˆBMA^

Áp dụng tc tổng 3 góc trong 1 tg ta có:

BAMˆBAM^ + BMAˆBMA^ + NBCˆNBC^ = 180o

=> 2BAMˆBAM^ = 180o - NBCˆNBC^

=> BAMˆBAM^ = 180o−NBCˆ2180o−NBC^2 (3)

Do ΔΔABH = ΔΔMBH (câu a)

=> AH = MH (2 cạnh t/ư)

9 tháng 1 2019

Hình tự vẽ

a, \(\Delta BAM\)và \(\Delta BDM\)

\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)

\(AM\): cạnh chung 

\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)

\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BA=BD\)(2 cạnh tương ứng )

Để nghĩ tiếp :(

27 tháng 3 2020

Ta có:

∠AMB+∠ABM=90o

∠BMD+∠MBD=900

Mà ∠AMB=∠BMD (gt)

=> ∠ABM=∠MBD

Xét ΔBAM và ΔBAM có:

∠ABM=∠MBD (gt)

BM  chung

∠ABM=∠MBD (cmt)

=>  ΔBAM = ΔBAM (g-c-g)

=> BA=BD (2 cạnh tương ứng)

b,Xét ΔABC và ΔDBE có:

∠ABC  chung

∠BAC=∠BDM=90o

BA=BD (cmt)

=> ΔABC = ΔDBE (g-c-g)

c,Ta có

BC⊥ED

AK⊥ED

=>  BC//AK hay BC//AN

=> ∠ANM=∠MBC ( 2 góc slt) (1)

Mà:

DH⊥AC

BA⊥AC

=> BA//DH hay BA//DN

=> ∠MND=∠ABM ( 2 góc so le trong) (2)

Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)

Từ(1) và (2) =>∠ANM=∠MND

=> NM là tia phân giác của góc HMK

d,Ta có BM là tia phân giác của góc ABC (3)

Và NM là tia phân giác của góc HMK

Vì ∠ANM=∠MBC

    ∠MND=∠ABM

=> ∠ANM=∠MBC=∠MND=∠ABM

=> BN là tia phân giác của góc ABC (4)

Từ (3) và (4) => B,M,N thẳng hàng