K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi

16 tháng 12 2018

A B C M H K P Q D E x y

a) Xét \(\Delta\)AMC và \(\Delta\)AHB có: ^ACM = ^ABH (=450); AC=AB; ^MAC = ^BAH (Cùng phụ ^BAM)

=> \(\Delta\)AMC = \(\Delta\)AHB (g.c.g) => AM=AH (2 cạnh tương ứng). Tương tự: AM=AK

=> AH=AK=AM. Hay AH=AK=1/2.HK (đpcm)

b) Gọi D và E lần lượt là hình chiếu của A trên MH và MK.

Xét \(\Delta\)HMK: MA trung tuyến (Do DH=AK), MA=AH=AK; MA vuông góc HK

=> \(\Delta\)HMK vuông cân tại M => ^HMK = 900 ; MA là phân giác ^HMK.

Xét ^HMK: MA là tia phân giác; AD và AE vuông góc MH; MK => AD=AE

Dễ thấy: ^DAE = 900 (Vì ^ADM = ^AEM = ^EMD = 900) => ^DAP = ^EAQ (Cùng phụ ^DAQ)

Xét \(\Delta\)ADP và \(\Delta\)AEQ có: ^ADP = ^AEQ (=900); AD=AE; ^DAP = ^EAQ (cmt)

=> \(\Delta\)ADP = \(\Delta\)AEQ (g.c.g) => AP=AQ (2 cạnh tương ứng).

Từ đó: \(\Delta\)PAQ vuông cân tại A. Dễ dàng chỉ ra PQ // BC (đpcm).

16 tháng 12 2018

Cách 2: chứng minh phần b:

Xét tg  HMK

có: HA = AK ( chứng minh phần a); \(MA\perp HK⋮A\)(gt)

=> tg HMK cân tại M ( định lí)

=> HM = MK (t/c)

Xét tg ABM và tg ACK

có: AB = AC(gt); ^ABM = ^ACK ( dễ chứng minh ^ABM = ^ACK = 45 độ); ^BAM = ^CAK ( khi cộng với ^MAC đều = 90 độ)

=> tg ABM = tg ACK ( c-g-c)

=> BM = CK ( 2 cạnh t/ ư)

Xét tg BMH vuông tại B và tg CKM vuông tại C
có: BM = CK (cmt); MH = KM (cmt)

=> tg BMH = tg CKM ( cgv-ch)

=> ^BHP = ^ CMQ ( 2 góc t/ ư)

HB = MC ( 2 cạnh t/ ư)

Xét tg HBP và tg MCQ

có: ^HBP = ^ MCQ ( dễ chứng minh ^HBP = ^MCQ = 45 độ); HB = MC (cmt); ^BHP = ^CMQ (cmt)

=> tg HBP = tg MCQ  ( g-c-g)

=> BP = CQ ( 2 cạnh t/ ư)

=> AP = AQ ( = AB- BP = AC - CQ)

và ^PAQ = 90 độ (gt)

=> tg PAQ vuông cân tại A ( định lí)

=> ^APQ = 45 độ

=> ^APQ = ^CBP ( = 45 độ)

mà ^APQ và ^CBP đồng vị

=> PQ // BC ( định lí)

...

xl bn! bn theo cách bn kia vẫn đúng đó, mk chỉ thêm 1 cách nữa thôi!

29 tháng 2 2020

A K M I C H B N

a)

Ta có nối K với M 

=> Xét t/gMCK và t/gMHC ta có:

CK=CH (gt) hay ^KCM=^MCH (gt)

MC (cạnh chung)

=>t/gMCK = t/gMCH (c.g.c)

=>MK=MH ( tương ứng)

đpcm.

b) Tiếp tục nối K và H

Gọi I là giao điểm của CM và KH

Xét t/gICK và t/gICH ta có:

CK=CH (gt) hay ^HCM=^CMK  (gt)

CI (cạnh chung)

=>t/gICK=t/gICH (c.g.c)

=>^CIK=^CIH( tương ứng)

Mà ^CIK+^CIH=180o( góc kề bù)

=>^CIK=^CIH=90o

=>CI_|_HK 

=>CM_|_HK

đpcm.

c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)

Vì ^KCM+^MCN=90o

=>^MCN=90o-^KCM

=>^MCN=90o-35o

=>^MCN=65o(2)

Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.

đpcm.

29 tháng 2 2020

Phạm Mai Oannh , tại sao góc CMH = góc CMN =65 độ vậy bn

7 tháng 2 2020

Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath