K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!

25 tháng 2 2020

B O C D M N A

Lấy D đối xứng với N qua O => ON = OD 

Xét \(\Delta\)ODB và  \(\Delta\)ONC có: ON = OD ; OB = OC ( O là trung điểm BC ) ; ^BOD = ^CON ( đối đỉnh ) 

=> \(\Delta\)ODB = \(\Delta\)ONC  => ^DBO = ^NCO mà hai góc này ở vị trí so le trong => BD // NC => BD //AC 

Mà AC vuông AB

=> BD vuông AB => \(\Delta\)DBM vuông tại B => BD2 +BM2 = MD2 (1)

Vì \(\Delta\)ODB = \(\Delta\)ONC => BD = NC  (2) 

Và \(\Delta\)DMN có: MO vuông DN ( vì ^MON = 90o ) ; OD = ON 

=> MO vừa là đường cao đồng thời là đường trung tuyến của \(\Delta\)DMN 

=> \(\Delta\)DMN cân => MD = MN (3) 

Từ (1); (2) ; (3) => NC2 + BM2 = MN2 

=> \(\frac{MB^2+NC^2}{MN^2}=\frac{MN^2}{MN^2}=1\)

11 tháng 4 2020

bạn ơi cách này là lớp 7 đúng ko

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi

4 tháng 4 2017

Khó quá

17 tháng 7 2017

A B C H E I M N x

a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N. 

\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.

 Ta có: ^ABH+^EBx=1800-^ABE=900 (1)

\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)

Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI

Xét \(\Delta\)ABI và \(\Delta\)BEC:

AB=BE

^BAI=^EBC        => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)

AI=BC

=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.

\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:

^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:

^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).