K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành

\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)

Do đó ABDN là hình bình hành

Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật

\(c,\) Kẻ đường cao AH

\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)

12 tháng 12 2021

Em cảm ơn ạ 

19 tháng 7 2015

sai đề r nha bạn, làm j có điểm D

19 tháng 8 2017

thế mà cũng đòi viết học ngu

16 tháng 12 2019

a) Xét tứ giác BDCN có :M là trung điểm BC

                                       M là trung điểm DN

\(\Rightarrow\)Giao điểm của hai đường chéo BC và DN là trung điểm M mỗi đường

\(\Rightarrow\)BDCN là hình bình hàng

b)Vì BDCN là hình bình hành

\(\Rightarrow\)BD//CN và BD=CN

mà N là trung điểm AC ( gt )

\(\Rightarrow\)BD // AN và BD =AN

\(\Rightarrow\)ABDN là hình bình hành

Có \(\widehat{A}\)=90 độ ( Vì tam giác ABC \(\perp\)tại A )

\(\Rightarrow\)ABDN là hình chữ nhật

\(\Rightarrow\)AD =BN ( tính chất hình chữ nhật)

16 tháng 12 2019

a. Ta có: D đối xứng với N qua M (gt)

      => NM = MD 

      => M là trung điểm của ND

  Xét tứ giác BDCN, ta có:

      M là trung điểm của ND (cmt)

      M là trung điểm của BC (gt)

      => BDCN là hình bình hành (dhnb)

    

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân