K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Theo giả thuyết ta có: tam giác ABC vuông tại A và M là trung điểm của BC => AM là trung tuyến của tam giác vuông ABC => AM=BM=MC (định lý đường trung tuyến trong tam giác vuông)

=> AM=BM=MC=BC:2=2.5cm.

30 tháng 7 2021

ko cần biết đúng sai

mk vẫn cho bạn

18 tháng 12 2018

a)Xét tg ABC cân tại A(vì AB=AC),ta có:

AM là đường trung tuyến (vì M là trung điểm của BC)

=>AM là đường cao của tg ABC

=>AM vuông góc với BC.

b)Gợi ý:

ta có tg ABM=tg ACM(c-c-c)(tự xét nhé)

=>gBAM=gCAM

Xét tg ABM và tg ACM,có: AI chung; AB=AC; gBAM=gCAM=>tg ABM = tg ACM(c-g-c)

=>g ABM =g ACM

mà g ABM =90*(vì BA vuông góc BI)

=>g ACM=90*

=>

 CI vuông góc với CA

22 tháng 1 2019

a, xét tam giác MBH và tam giác MCK ta có: 

góc MHB= góc MKC=90 độ

BM=MC(gt)

góc B =góc C(gt)

vậy tam giác BMH = tam giác CMK(ch-gn)

22 tháng 1 2019

b, xét tam giác AMH và tam giác AMK có:

AM chung

MH=MK( do tam giác BMH= tam giác CMK)

góc AHM= góc AKM=90 độ

suy ra tam giác AMH= tam giác AMK( ch-cgv)

26 tháng 4 2018

bạn tự vẽ hình nhé

a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC

Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC

b) Tam giác ABC cân nên góc B = góc C

Xét tam giác BHM và tam giác CKM có:

góc BHM= góc CKM= 90 độ

 góc B= góc C

BM=CM ( do M là trđiểm BC)

=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)

=> BH=CK

c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)

mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị) 

=> góc IBM =góc IMB => tam giác IBM cân

11 tháng 5 2019

 AC=8

A>B>C

b. chịu

11 tháng 5 2019

Hình  tự vẽ 

a) Xét tam giác vuông ABC có  :   AB2  +  AC2  = BC2 ( áp dụng đ/l Py-ta-go )                   ( BC là cạnh huyền nhé ! )

                                                       62    + AC2   = 102

                               => AC2 = 102 - 62 = 64

                               => AC = \(\sqrt{64}\)= 8( cm)

26 tháng 12 2016

a)XÉt tam giác HBM và tam giác KCM có:

   MB = Mc ( M là TĐ của BC)

   góc BMH = góc CMK ( 2 góc đối đình)

   MK = MH ( gt)

do đó : tam giác HBM = tam giác KCM (c-g-c)

20 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AMB\)và \(\Delta ANC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

MB = NC (gt)

=> \(\Delta AMB\)\(\Delta ANC\)(c - g - c) => AM = AN (hai cạnh tương ứng) (đpcm)

\(\Delta AHB\)và \(\Delta AHC\)có: AB = AC (\(\Delta ABC\)cân tại A)

BH = HC (H là trung điểm của BC)

Cạnh AH chung

=> \(\Delta AHB\)\(\Delta AHC\)(c - c - c) => \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

Mà \(\widehat{AHB}+\widehat{AHC}\)= 180o (kề bù)

=> \(2\widehat{AHB}=180^o\)

=> \(\widehat{AHB}=90^o\)

=> \(AH\perp BC\)(đpcm)

b/ \(\Delta AHM\)vuông và \(\Delta AHN\)vuông có: AM = AN (cm câu a)

Cạnh AH chung

=> \(\Delta AHM\)vuông = \(\Delta AHN\)vuông (cạnh huyền - cạnh góc vuông) => HM = HN (hai cạnh tương ứng) => H là trung điểm MN

Ta có HB = HC = \(\frac{BC}{2}=\frac{6}{2}\)= 3 (cm)

và \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lý Pitago)

=> AH2 = AB2 - HB2

=> AH2 = 52 - 32

=> AH2 = 25 - 9

=> AH2 = 16

=> AH = \(\sqrt{16}\)(vì AH > 0)

=> AH = 4 (cm)

Ta lại có BM = MN = NC (gt)

Mà BM + MN + NC = BC

=> 3BM = 6

=> BM = MN = NC = 2

=> HM = HN = 1

và \(\Delta AHM\)vuông tại H => AM2 = AH2 + MH2 (định lý Pitago)

=> AM2 = 42 + 12

=> AM2 = 16 + 1

=> AM2 = 17

=> AM = \(\sqrt{17}\)(cm) (vì AM > 0)