Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH BC.
a) Trong các đường xiên và đường vuông góc kẻ từ A điểm nằm ngoài đường thẳng BC đến đường thẳng BC thì đường vuông góc là đường ngắn nhất nên AM ngắn nhất khi M trùng H hay M là chân đường vuông góc kẻ từ A đến BC.
b) Cách 1:
+) Khi M trùng H thì AH < AB ( đường vuông góc luôn nhỏ hơn đường xiên)
+) Khi M nằm giữa B và H
Góc AMB là góc ngoài tại đỉnh M của tam giác AHM nên \(\widehat{AMB}>\widehat{AHM}= 90^0\) nên \(\widehat{AMB}\) là góc tù nên là góc lớn nhất trong tam giác ABM.
Trong tam giác ABM, cạnh AB đối diện với góc lớn nhất nên cạnh AB lớn nhất (định lí). Do đó AM < AB.
+) Khi M nằm giữa C và H
Góc AMC là góc ngoài tại đỉnh M của tam giác AHM nên \(\widehat{AMC}>\widehat{AHM}= 90^0\) nên \(\widehat{AMC}\) là góc tù nên là góc lớn nhất trong tam giác ACM
Trong tam giác ACM, cạnh AC đối diện với góc lớn nhất nên cạnh AC lớn nhất (định lí). Do đó AM < AC.
Mà AB = AC (gt)
\(\Rightarrow \) AM < AB
Vậy AM < AB
Cách 2:
Theo thử thách nhỏ trang 64, khi M thay đổi trên BC, M càng xa H thì AM càng lớn lên. Tuy nhiên, M nằm giữa B và C nên AM không vượt quá AB. Như vậy, AM < AB
Ta thấy ngay DMEA là hình chữ nhật nên DE = AM
Gọi H là chân đường vuông góc hạ từ A xuống BC.
Theo quan hệ giữa đường vuông góc và đường xiên thì \(AM\ge AH\)
Vậy AM nhỏ nhất khi AM = AH hay DE nhỏ nhất khi M trùng H.
EAMD hình chữ nhật( có 3 góc vuông )
=> ED = AM
AM ngắn nhất vuông khi AM vuông góc với BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC
EAMD hình chữ nhật( có 3 góc vuông )
=> ED = AM
AM ngắn nhất vuông khi AM vuông góc với BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC
Ta thấy ngay DMEA là hình chữ nhật nên DE = AM
Gọi H là chân đường vuông góc hạ từ A xuống BC.
Theo quan hệ giữa đường vuông góc và đường xiên thì \(AM\ge AH\)
Vậy AM nhỏ nhất khi AM = AH hay DE nhỏ nhất khi M trùng H.