K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Violympic toán 7

22 tháng 3 2018

Hung nguyenMashiro ShiinaXuân SángNhã DoanhnAkai HarumagonhuminhNguyễn Thanh Hằngnguyen thi Nguyễn Huy TúvangMến Hoàng Anh ThưVũPhạm Nguyễn Tất ĐạtVõ Đông Anh TuấnHoàng Lê Bảo NgọcPhương Ansoyeon_Tiểubàng giảiAce Legona

23 tháng 3 2018

Hình vẽ

23 tháng 3 2018

+) Xét tam giác vuông AEI và tam giác vuông CFI có:

AI = CI (gt)

\(\widehat{AIE}=\widehat{CIF}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AEI=\Delta CFI\)    (Cạnh huyền - góc nhọn)

+) Theo quan hệ giữa đường xiên và đường vuông góc ta có:

\(AI>EI;IC>IF\Rightarrow AC>EF\)   (đpcm)

17 tháng 4 2017

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

17 tháng 4 2017

tra loi jup minh cau hoi

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)