Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có
BD=DA (gt)
AE=EC (gt)
=> DE là đg trung bình của tam giác ABC
b)
ta có DE là đg trung bình của tam giác ABC
=> DE=1/2 BC
=>DE= 6 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M H F D K I G
Câu a và b cô hướng dẫn:
a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
b) Tứ giác FDEA là hình bình hành nên AF // DE
c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)
Do tam giác ABC vuông tại A, M là trung điểm BC nên MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)
Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)
\(\Rightarrow\widehat{FAM}=90^o\)
Vậy tam giác AFM vuông.
c) Gọi giao điểm của AM và DE là G.
Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.
Vậy thì ta có ngay AFDE là hình chữ nhật.
Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.
Vậy thì AM, DE và KI đồng quy tại điểm G.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AC
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ∆ABC có :
D là trung điểm AB
E là trung điểm BC
=> DE là đường trung bình ∆ABC
=> DE//AC , DE = \(\frac{1}{2}AC\)= \(\frac{16}{2}=8\)cm
Xét ∆ABC có :
E là trung điểm BC
F là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)
Xét tứ giác AFED có :
AD//EF ( AB//FE , D\(\in\)AB )
DE//FA ( DE//AC , F \(\in\)AC )
=> AFED là hình bình hành
Mà BAC = 90°
=> AFED là hình chữ nhật
=> DEF= EFA = FAD = ADE = 90°
Vì F là trung điểm AC
=> FA = FC = 8cm
Áp dụng định lý Py - ta -go vào ∆AEF ta có :
AE2 = FE2 + AF2
=> AE = 10cm
b) Xét ∆ABC ta có :
D là trung điểm AB
F là trung điểm AC
=> DF là đường trung bình ∆ABC
=> DF//BC
Xét tứ giác BEFD ta có :
BE//DF ( BC//DF , E \(\in\)BC )
BD//FE ( AB//FE , D\(\in\)AB )
=> BEFD là hình bình hành
c) Chứng minh trên
![](https://rs.olm.vn/images/avt/0.png?1311)
a: BC=10cm
DE=5cm
b: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AC và DF=AC/2
hay DF=CE và DF//CE
Xét tứ giác DFCE có
DF//CE
DF=CE
Do đó: DFCE là hình bình hành
c: Xét tứ giác ADFE có
FD//AE
FD=AE
Do đó: ADFE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADFE là hình chữ nhật
Suy ra: FA=DE
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình!
a) \(\frac{BE}{EN}=\frac{BQ}{QF}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\)
=> DE//NC hoặc DE//AC
b) Do DE//AC nên:
\(\frac{DE}{CN}=\frac{BD}{BC}\Rightarrow DE=\frac{BD}{BC}.CN\left(1\right)\)
Tương tự, ta có:
\(DF=\frac{CD}{BC}.BM\left(2\right)\)
Từ (1) và (2) \(=\frac{DE}{DF}=\frac{BD}{CD}\cdot\frac{CN}{BM}\)
Mà: \(\frac{BD}{CD}=\frac{AB}{AC}\)và \(\frac{CN}{BM}=\frac{AC}{AB}\)
Nên \(\frac{DE}{DF}=1\Rightarrow DE=DF\)
=> \(\widehat{D_1}=\widehat{DAC}=\widehat{DAB}=\widehat{D_2}\)
\(\Rightarrow\Delta ADE=\Delta ADF\)
\(\Rightarrow AE=AF\)
a) Xét ∆ABC, ta có
D là trung điểm của AB
E là trung điểm của AC
=>DE là đg trung bình của tam giác ABC
=>DE //BC và DE=BC/2
b)Ta có
DE=BC/2(cmt)
=>DE=12/2=6cm
a) Vì D là trung điểm của AB và E là trung điểm của AC
Nên DE là đường trung bình tam giác ABA0
b) Vì ABC là tam giác vuông ở đỉnh A nên BC = DE * 2
= AF * 2
Vậy chiều dài DE và AF là 12 : 2 = 6 ( cm)
c) Vì 6 cm = 6 cm nên DE = AF