K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

: Xét ΔCAB có 

M là trung điểm của AB

ME//AB

Do đó: E là trung điểm của AC

Xét tứ giác AMCN có 

E là trung điểm của đường chéo AC

E là trung điểm của đường chéo MN

Do đó: AMCN là hình bình hành

mà MN⊥AC

nên AMCN là hình thoi

18 tháng 9 2021

undefined

+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)

+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)

+) Tam giác ABD vuông tại A nên:

∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)

Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)

+) Tam giác BCE vuông tại C nên:

∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)

Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)

Vậy tam giác CDE có hai góc bằng nhau.

+ΔABD vuông tại A => ˆABD+ˆADB=90

Mà ˆADB = ˆCDE  đối đỉnh

=>ˆABD^+ˆCDE = 90 (1)

+ΔCBE vuông tại C =>ˆCBE+ˆCEB=90

Mà ˆCBE = ˆABD ( BD là phân giác)

=> ˆCEB+ˆABD = 90 (2)

(1)(2) => ˆCEB =ˆCDE  hay  ˆCED=ˆCDE ( dpcm)

20 tháng 9 2021

Hiệu của hai số là 4. Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng 
bằng 60. Tìm hai số đó

29 tháng 11 2018

Mk ko còn thời gian bạn tham khảo nhé

https://olm.vn/hoi-dap/detail/92770368985.html

30 tháng 10 2016

Ta có hình vẽ:

A B C D H E d

Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)

Vì ABC vuông góc tại A nên góc A = 90o

Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)

=> ABC = 90o - ACB

=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)

=> CBD = 45o - \(\frac{ACB}{2}\)

\(CH\perp DE\) nên CHD = 90o

Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)

=> 45o - \(\frac{ACB}{2}\) + BCH = 90o

=> BCH - \(\frac{ACB}{2}\) = 45o

=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)

=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)

=> BCH - ACB = \(\frac{DCE}{2}\)

=> \(DCH=\frac{DCE}{2}\)

=> CH là tia phân giác của góc DCE (đpcm)

1 tháng 11 2016

bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r khocroi

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

13 tháng 12 2017

hjufyhijug