K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Ta có hình vẽ:

A B C M N I 30 độ a/ Xét tam giác AIB và tam giác MIB có:

AB = MB (GT)

BI : cạnh chung

AI = IM (GT)

=> tam giác AIB = tam giác MIB (c.c.c)

b/ Ta có: tam giác AIB = tam giác MIB (câu a)

=> \(\widehat{BIA}\)=\(\widehat{BIM}\) (2 góc tương ứng)

\(\widehat{BIA}\)+\(\widehat{BIM}\) = 1800 (kề bù)

=> \(\widehat{BIA}\)=\(\widehat{BIM}\)=900

=> BN\(\perp\)AM (đpcm)

c/ Trong tam giác ABC có:

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800

hay 900 + \(\widehat{B}\) + 300 = 1800

=> \(\widehat{B}\)=600

Vì tam giác AIB = tam giác MIB (đã chứng minh trên câu a)

=> \(\widehat{ABI}\)=\(\widehat{MBI}\) (2 góc tương ứng)

Ta có: \(\widehat{ABI}\)=\(\widehat{MBI}\)=\(\frac{1}{2}\)\(\widehat{ABM}\)=\(\frac{1}{2}\)600 = 300

Trong tam giác BNC có:

\(\widehat{NBC}\)+\(\widehat{BCN}\)+\(\widehat{BNC}\) =1800

hay 300 + 300 + \(\widehat{BNC}\)=1800

=> \(\widehat{BNC}\) = 1200

Vậy \(\widehat{BNC}\)=1200 hay \(\widehat{INC}\)=1200

29 tháng 12 2015

tích đi sau mình làm cho

t

29 tháng 12 2015

tại sao tia BI cắt Ac tại M phải là N 

Mà ở đầu bài cậu nói là trên cạnh BC lấy điểm M sao cho MA=BM

23 tháng 4 2016

Bạn vẽ hình ra đc ko?

1 tháng 2 2019

tu ve hinh :

a; b, xet tamgiac AMF va tamgiac AME co : AM chung

goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)

goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)

=> tamgiac AMF = tamgiac AME (ch - gn)               

=> AE = AF (dn)             (1)

AB = AC do tamgiac ABC can tai A (gt)

AE + EB = AB

AF + FC = AC

=> EB = FC 

xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt) 

goc MEB = goc MFC do ...

=>  tamgiac BEM = tamgiac CFM  (cgv - gnk)

=> MB = MC

c, (1) => tamgiac AEF can tai E (dn)

=> goc AEF = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2

=> goc AEF = goc B ma 2 goc nay dong vi 

=> EF // BC (dh)

1 tháng 2 2019

                          Giải

Bạn tự vẽ hình

a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung

\(\widehat{AFM}=\widehat{AEM}=90^0\)  do MF\(\perp\)AC va ME\(\perp\)AB 

\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của  \(\widehat{BAC}\)

\(\Rightarrow\Delta AFM=\Delta AME\)             

\(\Rightarrow AE=AF\)          (1)

AB = AC do \(\Delta ABC\) cân tại A 

AE + EB = AB

AF + FC = AC

\(\Rightarrow\) EB = FC 

Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\)\(\widehat{C}\) do \(\Delta ABC\) cân tại A 

\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)

\(\Rightarrow\Delta BEM=\Delta CFM\)

\(\Rightarrow\) MB = MC

c, Từ (1) suy ra \(\Delta AEF\)cân tại E

\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)

\(\Delta ABC\) cân tại A  \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2

\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị

\(\Rightarrow EF//BC\)