Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
a: Xét tứ giác ADCH có
M là trung điểm của AC
M là trung điểm của HD
Do đó: ADCH là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
HE//AD
HE=AD
Do đó:ADHE là hình bình hành
a) Tứ giác AEDF có: góc BAC=90\(^o\)
góc DFA=90\(^o\)
góc DEF=90\(^o\)
=> Tứ giác AEDF là hình chữ nhật
b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)
=> Δ ABD cân tại D
mà DE là đường cao( do AB là đường trung trực của DM)
=> DE là đường trung tuyến
=> EA=1/2AB=> EA=3 (cm)
CM tương tự đối với Δ ADC
từ đó suy ra: FA=1/2AC=> FA=4 (cm)
\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)
c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)
E là trung điểm của đường chéo DM
=> ADBM là hình bình hành
mà MD vuông góc với AB
=> ADBM là hình thoi
d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi
Ta có: MA=AD( 2 cạnh của hình thoi)
NA = AD( 2 cạnh của hình thoi)
=> MA=NA
mà MA=BD
=> NA=BD
Ta có: NA//DC( cạnh đối của hình thoi)
=> NA//BD( vì BD và DC trùng nhau)
tứ giác BAND có: NA=BD
NA//BD
=> BADN là hình bình hành
=> AB=DN
Để ADCN là hình vương
<=> DN=AC
<=> AB=AC( AB=DN)
<=> Δ ABC cân tại A
mà Δ ABC vuông
=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A
HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ
a: Xét ΔAMH vuông tại H và ΔEMK vuông tại K có
MA=ME
\(\widehat{AMH}=\widehat{EMK}\)
Do đó: ΔAMH=ΔEMK
Suy ra: MH=MK
Xét tứ giác AHEK có
M là trung điểm của AE
M là trung điểm của HK
Do đó AHEK là hình bình hành
b: Ta có: AHEK là hình bình hành
nên AH//KE và AH=KE
=>DH//KE và DH=KE
=>DHKE là hình bình hành
mà \(\widehat{DHK}=90^0\)
nên DHKE là hình chữ nhật
DM và DE là hai tia đối nhau
=>D nằm giữa M và E
mà DM=DE
nên D là trung điểm của ME
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Xét tứ giác AMBE có
D là trung điểm chung của AB và ME
=>AMBE là hình bình hành
Hình bình hành AMBE có MA=MB
nên AMBE là hình thoi