Cho tam giác ABC vuông tại A . Đường phân giác của góc ABC cắt AC tại H . Kẻ HE vuông góc với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

 a.Xét ΔAHB và ΔEHB có 

BH chung

∠ABH=∠EBH (gt)

⇒ ΔAHB = ΔEHB (ch-gn)

b. Do ΔAHB = ΔEHB

⇒AB=EB

⇒ΔEAB cân B

Mà BH là phân giác góc B

⇒BH đồng thời là đường trung trực AE

c. Do ΔAHB = ΔEHB

⇒AH=HE

Xét ΔHEC có ∠HEC=90 độ

⇒HC là cạnh huyền; HE cạnh góc vuông

⇒HC>HE

⇒HC>HA

d. Xét ΔHAI và ΔHEC có

∠AHI=∠EHC ( đối đỉnh )

HA=HE

∠HAI=∠HEC = 90 độ

⇒ΔHAI = ΔHEC (gcg)

⇒AI=EC

mà AB=EB

⇒BI=BC

⇒ΔBIC cân B

mà BH là phân giác góc B

⇒BH đồng thời là đg trung trực của IC

⇒BH⊥IC

19 tháng 6 2021

Bài 1 : 

a, bạn tự làm nhé 

b, \(C\left(x\right)=12-2x^2+\frac{1}{4}x^3-2x-3x^2-10x+\frac{1}{4}x^3-3=9-5x^2+\frac{1}{2}x^3-12x\)

\(D\left(x\right)=12-2x^2+\frac{1}{4}x^3-2x+3+3x^2+10x-\frac{1}{4}x^3=15+x^2+8x\)

c, Đặt \(D\left(x\right)=x^2+8x+15=0\)

\(\Leftrightarrow x^2+5x+3x+15=0\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\Leftrightarrow x=-3;x=-5\)

Vậy x = -3 ; x = -5 là nghiệm của đa thức D(x) 

15 tháng 12 2020

Sửa câu b: Từ M kẻ ME

Bg

a/ Xét hai tam giác AMB và AMC có:

AB = AC (gt)

BM = MC (vì M là trung điểm của BC)

AM là cạnh chung

Nên \(\Delta AMB=\Delta AMC\)(c.c.c)

Vậy \(\Delta AMB=\Delta AMC\)

b/ Xét hai tam giác vuông AME và AMF có:

\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))

AM là cạnh chung

Nên \(\Delta AME=\Delta AMF\)(g.c.g)

Do đó AE = AF (hai cạnh tương ứng)

Vậy AE = AF

c và d hơi dài. Đợi một thời gian :((

16 tháng 12 2020

một thời gian là bao lâu vậy bạn ?

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

25 tháng 12 2021

a/ Xét \(\Delta ABD\) và \(\Delta KBD\)

AB=BK (gt); BD chung

\(\widehat{ABD}=\widehat{KBD}\) (gt)

\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)

b/

\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)

\(AH\perp BC\left(gt\right)\)

=> AH//DK (cùng vuông góc với BC)

c/

Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có

\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\)  (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)

Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)

=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)

=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

21 tháng 4 2020

A B C K M O E H P

21 tháng 4 2020

a ) a.Vì P∈Trung trực của BC

\(\Rightarrow PB=PC\)

Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)

Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)

\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)

\(\Rightarrow BH=CK\)

b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)

\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A 

Mà AP là phân giác ^A 

\(\Rightarrow AP\perp HK\)

Qua B kẻ BE // AK , \(E\in HK\)

\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)

Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)

\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)

Mà \(BH=CK\Rightarrow BE=CK\)

Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)

Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BME}=\widehat{KMC}\)

\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)

\(\Rightarrow E,M,K\) thẳng hàng 

\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng 

c ) Do \(PA\perp HK\) ( câu a ) 

\(\Rightarrow AP\perp HK=O\)

Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK

\(\Rightarrow OH=OK\)

\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)

                                                                 \(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)

                                                                    \(=AH^2+PH^2\)

                                                                    \(=AP^2,\left(PH\perp AB\right)\)