Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
Ta có
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)
\(\Rightarrow AB=\frac{3.BC}{5}\)
Ta có
\(BC^2=AB^2+AC^2\) (pitago)
\(\Rightarrow BC^2=\left(\frac{3.BC}{5}\right)^2+\left(AD+DC\right)^2\)
\(\Rightarrow BC^2=\frac{9.BC^2}{25}+64\Rightarrow16.BC^2=1600\Rightarrow BC^2=100\Rightarrow BC=10cm\)
\(AB=\frac{3.BC}{5}=\frac{3.10}{5}=6cm\)