K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

a) Xét \(\Delta HBA\)và \(\Delta ABC\)

ta có \(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

nên \(\Delta HBA\)\(\Delta ABC\)(g - g)

b) Xét \(\Delta ABC\)ta có

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=20\left(cm\right)\)

có \(\Delta HBA\)\(\Delta ABC\)

nên \(\frac{AH}{AC}=\frac{AB}{BC}\)và \(\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Rightarrow AH=9,6\left(cm\right);BH=7,2\left(cm\right)\)

c) Xét \(\Delta ABC\)

có AD là phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)

mà có BD + CD = BC = 20

nên BD = \(\frac{60}{7}\)

d)có AK + KH = AH
suy ra KH = 6 (cm)

có 

24 tháng 7 2015

ai giải giùm tớ dy....giải dung to cko **** nka

3 tháng 8 2017

cho gì vậy bạn

1 tháng 1 2016

Pn vẽ hinh dk tui làm cho

12 tháng 5 2018

a) Xét  \(\Delta BAH\) và      \(\Delta BCA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BHA}=\widehat{BAC}=90^0\)

suy ra:   \(\Delta BAH~\Delta BCA\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

      \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

\(\Delta ABC\)có  AK  là phân giác  

\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)

suy ra:  \(KB=\frac{30}{7}\)     \(KC=\frac{40}{7}\)

c) Xét  \(\Delta ABD\)và   \(\Delta HBI\)có:

    \(\widehat{ABD}=\widehat{HBI}\) (gt)

   \(\widehat{BAD}=\widehat{BHI}=90^0\)

suy ra:  \(\Delta ABD~\Delta HBI\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)

\(\Rightarrow\)\(AB.BI=BD.HB\)

d)    \(S_{ABC}=\frac{1}{2}.AB.AC=24\)

 \(\Delta ABH~\Delta CBA\) (câu a)

\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)

\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)

12 tháng 5 2018

â) chứng minh AB2 = BH . BC 

 Xét : \(\Delta ABHva\Delta ABC,co\):

       \(\widehat{B}\) là góc chung 

       \(\widehat{A}=\widehat{H}=90^o\)

Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)

=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng ) 

=> AB . AB = BH . BC

=> AB2       = BH . BC 

b)