Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: ΔABC vuông tại A
a: MB/NH=BH^2/AB:CH^2/AC
=BH^2/CH^2*AC/AB
=(AB/AC)^4*AC/AB=AB^3/AC^3
b: BC*BM*CN
=BC*BH^2/AB*CH^2/AC
=AH^4/AH=AH^3
c: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nen AN*AC=AH^2
ΔABC vuông tại A có AH vuông góc BC
nên HB*HC=AH^2
=>HB*HC=AM*AB
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>AM*AB=HB*HC=MN^2
d: BM*BA+AN*AC
=BH^2+AH^2=AB^2=BH*BC
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(\left\{{}\begin{matrix}AM\cdot AB=AH^2\left(1\right)\\AM\cdot MB=MH^2\end{matrix}\right.\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}AN\cdot AC=AH^2\left(2\right)\\NA\cdot NC=NH^2\end{matrix}\right.\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Xét ΔHNM vuông tại H có
\(NM^2=HN^2+HM^2\)
hay \(HB\cdot HC=AM\cdot MB+AN\cdot NC\)
Bạn tự kẻ hình nhé =)))
Áp dung hệ thưç giữa cạnh và đương cao vào tg ABC, có:
AH^2=BH.HC
->AH=12cm
Áp dụng hệ thức giữa cạnh và đg cao vào tg BAH có
1/HK^2=1/BH^2 +1/AH^2
-> HK= 7.2 cm
áp dụng tương tự vào tg HAC tính được HN=9.6 cm
AMHN là hcn ( bạn tự chứng minh vì có 3 góc =90độ)
SMHN=HK.HN=7.2 . 9.6=69.12 cm
a: Xét (AH/2) có
ΔAMH nội tiếp
AH là đường kính
Do đó: ΔAMH vuông tại M
Xét (HA/2)có
ΔAHN nội tiếp
AH là đường kính
Do đó;ΔAHN vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: AM*AB=AH^2
AN*AC=AH^2
Do dó: AM*AB=AN*AC
c: góc NME
=góc NMH+góc EMH
=góc HAC+góc HCA=90 độ
=>NM là tiếp tuyến của (E)
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
Mình ko hiểu