Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN

Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{C}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{C}\)
Ta có: \(\widehat{CAH}+\widehat{BAH}+90^0\)
\(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{CAH}=\widehat{B}\)

a) Vì ΔABC vuông tại A(gt)
=> \(\widehat{B}+\widehat{C}=90\) (1)
Xét ΔABH vuông tại A(gt)
=> \(\widehat{B}+\widehat{BAH}=90\) (2)
Từ (1)(2) suy ra: \(\widehat{BAH}=\widehat{C}\)
b) Xét ΔAHC vuông tại H(gt)
=> \(\widehat{CAH}+\widehat{C}=90\) (3)
Từ (1)(3) suy ra: \(\widehat{CAH}=\widehat{B}\)
A B C H
Có tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90o (tính chất tam giác vuông)
Xét tam giác AHC vuông tại H (AH là đường cao)
=> góc C + góc CAH = 90o (tính chất tam giác vuông)
Mà góc C + góc B = 90o (cmt)
=> Góc B = góc CAH (Đpcm)
Xét tam giác BAH vuông tại H (AH là đường cao)
=> Góc B + góc BAH = 90o (tính chất tam giác vuông)
Mà góc B + góc C = 90o (cmt)
=> góc C = góc BAH (Đpcm)