Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E F
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)
\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)
b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)
c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)
\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)
Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)
\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)
\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Vì DE la dg pg cua goc ADB (gt)
=.>AD/DB= AE/EB (h chat dg pg trong tam giac) (1)
Vi DF la dg pg cua goc ADC (gt)
=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác) (2)
tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1 (dpcm)
Bài 1:
Gọi chiều dài là x,gọi chiều rộng là y
Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20 (1)
Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36 (2)
Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)
\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)
Diện tịhs hình chữ nhật là: x.y=28.8=224
Bài 2
Xét ΔHAB và ΔACB có:
\(\widehat{AHB}=\widehat{BAC}=90\)
\(\widehat{B}\) : góc chung
=>ΔHAB~ΔACB(g.g)
b) Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)
=>\(BC^2=12^2+16^2=400\)
=>BC=20cm
Vì ΔHAB~ΔACB(cmt)
=>\(\frac{AH}{AC}=\frac{AB}{BC}\)
=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)
Xét △ABC△ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (Py-ta-go)
BC2 = 212 + 282 = 1225
=> BC = 1225−−−−√=351225=35 cm
Xét △ABC△ABC, có:
AD là tia phân giác
=> BDDC=ABACBDDC=ABAC
Hay: BDAB=DCACBDAB=DCAC
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
BDAB=DCAC=BD+DCAB+AC=BCAB+AC=3521+28=57BDAB=DCAC=BD+DCAB+AC=BCAB+AC=3521+28=57
⇒BD=5AB7=5.217=15⇒BD=5AB7=5.217=15
CD=5AC7=5.287=20CD=5AC7=5.287=20
Vậy ..............
hello
loooooooooooooooo