Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)
c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)
CH=BC-BH=12,8(cm)
a) Xét tam giác ABC và tan giác HBA, ta có:
\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
=> Tam giác ABC ~ tam giác HBA (g-g)
=>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)
Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)
<=> AB . AB = BC . BH
<=> \(AB^2\)= BC . BH
b) Xét tam giác ABC và tam giác HAC, ta có:
\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)
\(\widehat{C}\)là góc chung
=> Tam giác ABC ~ tam giác HAC (g-g)
Mà tam giác ABC ~ tam giác HBA (cmt)
=> Tam giác HBA ~ tam giác HAC (tính chất)
=> \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)
Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)
<=> AH . AH = HB . HC
<=> \(AH^2\)= HB . HC
c) Tam giac ABC vuong tai A co:
\(BC^2\)= \(AB^2\)+\(AC^2\)(Pytago)
\(BC^2\)= \(6^2\)+\(8^2\)
\(BC^2\)= 100
<=> BC =\(\sqrt{100}\)(BC > 0)
<=> BC = 10 (cm)
Mat khac: BC = HB + HC
Tam giac HAC vuong tai H co:
\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)
\(8^2\)= HB . HC + \(HC^2\)
64 = HC (HB + HC)
64 = HC . BC
64 = HC . 10
=> HC = 6,4 (cm)
Ma BC = HB + HC
=> 10 = HB + 6,4
<=> HB = 3,6 (cm)
Ta co:
\(AH^2\)= HB . HC (cmt)
=>\(AH^2\)= 3,6 . 6,4
<=> \(AH^2\)= 23,04
<=> AH = \(\sqrt{23,04}\)(AH > 0)
<=> AH = 4,8 (cm)
tự kẻ hình
a, xét tam giác ABC và tam giác HBA có : góc B chung
góc BAC = góc BHA = 90
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
=> AB/BH = AC/AH
=> AB.AH = BH.AC
b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)
BH = 3; AB = 5(gt)
=> 3^2 + AH^2 = 5^2
=> AH^2 = 16
=> AH = 4 do AH > 0
xét tam giác ABH có : BI là pg của góc ABH (gt)
=> AI/AB = IH/BH (tính chất)
=> AI+IH/AB+BH = AI/AB = IH/BH
=> AH/AB + BH = AI/AB = IH/BH
có: AH = 4; AB = 5; BH = 3
=> 4/3+5 = AI/5 = IH/3
=> AI/5 = IH/3 = 1/2
=> AI = 5/2 và IH = 3/2
c, góc CAH = 90 - góc HAB
góc HBA = 90 - góc HAB
=> góc CAH = góc HBA
xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90
=> tam giác AHC đồng dạng với tam giác BHA (g-g)
=> AC/AB = AH/HB
=> AC/AH = AB/HB
BI là pg của tam giác AHB => AI/AH = AB/AB
CK là pg của tam giác AHC => CK/KH = AC/AH
=> AI/AH = CK/KH
=> KI // AC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔBAC có BF là phân giác
nên AF/AB=CF/CB
=>AF*CB=AB*CF