K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

a, Xét hai tam giác vuông AKD và AHD có

AD là cạnh chung

góc KAD = góc HAD ( do AD là phân giác góc HAB )

=> tam giác AKD = tam giác AHD ( CH - GN )

b,Xét hai tam giác vuông DKB và DHI có :

KD = DH ( do tam giác AKD = tam giác AHD )

góc BDK = góc IDH ( hai góc đối đỉnh )

=> tam giác DKB = tam giác DHI ( cv- góc nhọn kề )

=> IH = KB ( hai cạnh tương ứng )

1 tháng 8 2019

Vì AD là tia phân giác của HAB nên KD = DH

       xét tam giác BDK và tam giác IDH 

         BKD = IHD = 90độ

           KD = DH ( cmt )

        BDK = IDH ( 2 góc đối đỉnh )

          suy ra tam giác BDK = tam giác IDH ( g.c.g)

         suy ra IH = KB  ( 2 cạnh t.ư)

 b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH

     xét tam giác BIK  và tam giác HKI

      BK = IH ( câu a )

      BKI = KIH ( cmt )

      KI - cạnh chung

     suy ra tam giác BIK = ta giác HKI ( c.g.c)

     suy ra BIK = IKH ( 2 góc t.ư )

     mà 2 góc này ở vị trí SLT nên HK//IB

c) vì KD vuông góc vs AK 

    AC vuông góc vs AK  suy ra AC // KD ( quan hệ từ vuông góc đến song song )

   suy ra KDA = DAC ( 2 góc SLT)                          ( 1 )

  Xét tam giác KDA và tam giác HDA 

          DKA = DHA = 90độ

          DA - cạnh huyền

          KAD = DAH 

          suy ra tam giác KDA = tam giác HDA (c.h.g.n)

         suy ra KDA= ADH (2 góc t.ư)      (2)

         từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)

        suy ra tam giác DAC cân tại C

       suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC

      Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD

CHÚC BẠN HỌC TỐT

7 tháng 3 2020

bạn chỉ mình đăng hình lên đi

a) Xét ∆ vuông AKD và ∆ vuông AHD có : 

AD chung 

BAD = HAD 

=> ∆AKD = ∆AHD (ch-gn)

b) Vì ∆AKD = ∆AHD (cmt)

=> KD = DH ( tương ứng) 

Xét ∆ vuông KBD và ∆ vuông HID có : 

BDK = IDH ( đối đỉnh) 

KD = DH (cmt)

=> ∆KBD = ∆HID (cgv-gn)

=> KB = IH (dpcm)

c) Vì ∆KDI = ∆BDI (cmt)

=> BD = DI , KD = ID 

=> ∆BDI cân tại D , ∆KDH cân tại D 

=> DKI = DIK 

=> DBI = DIB 

Xét ∆BDI có : 

IBD = \(\frac{180°-BDI}{2}\)

Xét ∆KDI có : 

DIK = \(\frac{180°-KDI}{2}\)

Mà KDI = BDI ( đối đỉnh) 

=> IBD = DIK 

Mà 2 góc này ở vị trí so le trong 

=> HK //IB 

d) Xét ∆ vuông ADH có : 

ADI = 90° - DAI 

Mà DAC = KAC - KAD 

=> DAC = 90° - KAD 

Mà AD là phân giác 

=> DAI = KAD 

=> ADI = DAC 

=> ∆ADC cân tại C 

Mà CN là phân giác C 

=> CN là trung tuyến và là đường cao (1)

Mà AI là đường cao (2)

Từ (1) và (2) => N là trực tâm ∆ACD

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
7 tháng 9 2021
A: Ta có tam giác ABC cân tại A. =>AB=AC(2cạnh tương ứng) Xét tam giác ABH và tam giác ACH có: AB:Cạnh chung GÓC BAH= GÓC CAH(Theo bài ra) AB=AC(Cmt) =>Tam giác ABH=Tam giác ACH(c.g.c) Phần B thì nghỉ dịch nhiều quá nên mk ko biết nó đối theo hướng nào nên ko làm đc. Sorry bn😪 CHÚC BN HOK TỐT.😍
30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

9 tháng 7 2020

A B D E K C H I

a.Xét hai tam giác vuông ABE và tam giác vuông KBE có

                 góc ABE = góc KBE = 90độ

                  cạnh BE chung 

                  góc ABE = góc KBE [ gt ]

Do đó ; tam giác ABE = tam giác KBE [ g.c.g ]

\(\Rightarrow\) AB = KB [ cạnh tương ứng ]

Vậy tam giác ABK cân tại B

b.Xét tam giác  ABD và tam giác KBD có

               AB = KB [ vì tam giác ABE = tam giác KBE theo câu a ]

               góc ABD = góc KBD [ vì BD là tia phân giác góc B ]

             cạnh BD chung

Do đó ; tam giác ABD = tam giác KBD [ c.g.c ]

\(\Rightarrow\)góc BAD = góc BKD [ góc tương ứng ]

mà bài cho góc BAD = 90độ nên góc KBD = 90độ

Vậy DK vuông góc với BC

c.Vì DK vuông góc với BC và AH vuông góc với BC nên

DK // AH

Suy ra ; góc HAK = góc DKA [ ở vị trí so le trong ]   [ 1 ]

Mặt khác ; AD = DK [ vì tam giác ABD = tam giác KBD ]

\(\Rightarrow\)tam giác ADK là tam giác cân tại D nên 

góc DKA = góc DAK [ 2 ]

Từ [ 1 ] và [ 2 ] suy ra 

góc HAK = góc DAK 

Vậy AK là tia pg góc KAD hay AK là tia pg góc HAC