Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADHE có
AD//EH(AC//EH,D∈AC)
AE//DH(AB//DH,E∈AB)
Do đó: ADHE là hình bình hành(dấu hiệu nhận biết hình bình hành)
Hình bình hành ADHE có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\),E∈AB,D∈AC)
nên ADHE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
⇒AH=ED(do AH và ED là hai đường chéo trong hình chữ nhật ADHE)(đpcm)
Cm: a) Ta có: BA ⊥⊥AC (gt)
HD // AB (gt)
=> HD ⊥⊥AC => ˆHDA=900HDA^=900
Ta lại có: AC ⊥⊥AB (gt)
HE // AC (gt)
=> HE ⊥⊥AB => ˆHEA=900HEA^=900
Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^
Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)
ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)
=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2)
Từ (1) và (2) => ˆODA=ˆBODA^=B^
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)
=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)
hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900
=> AM⊥DEAM⊥DE(Đpcm)
c) (thiếu đề)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là phân giác
Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
mà AM là phân giác
nen AEMF là hình thoi
b: Xét ΔABC có ME//AC
nên BE/BA=BM/BC=1/2
=>E là trung điểm của AB
Xét ΔABC có MF//AB
nên CF/CA=CM/CB=1/2
=>F là trung điểm của AC
Xét ΔABC có E,F lần lượtlà trung điểm của AB và AC
nên EF là đường trung bình
=>EF=1/2BC và EF//BC
c: Xét ΔAEM và ΔAFM có
AE=AF
góc EAM=góc FAM
AM chung
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
mà AE=AF
nên AM là trung trực của FE
A C B M H E D O I
Cm: a) Ta có: BA \(\perp\)AC (gt)
HD // AB (gt)
=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)
Ta lại có: AC \(\perp\)AB (gt)
HE // AC (gt)
=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)
Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)
\(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)
=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2)
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)
hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)
=> \(AM\perp DE\)(Đpcm)
c) (thiếu đề)