Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) do cùng phụ với góc HAC
suy ra: \(\Delta AHB~\Delta CHA\)
\(\Rightarrow\)\(\frac{AH}{CH}=\frac{HB}{HA}\)
\(\Rightarrow\)\(AH^2=HB.CH\)

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)

a) Tg vuông ABC và tg vuông HBA có góc B chung nên đồng dạng suy ra AB/HB = AC/HA(1)
Ta lại có M, N lần lượt là tđ của BH, AH => BH = 2MB (2) ; AH = 2AN (3)
Từ (1)(2)(3) => AB/2MB = AC/2AN hay AB/MB = AC/AN (4) mà góc ABM = góc CAN (cùng phụ với góc ACB). Vậy tg ABM đd tg CAN (c-g-c)
b) MN là đường tb của tg ABH => MM // AB mà AB vuông góc AC => MM vuông góc AC. Vậy N là trực tâm của tg AMC => CN vuông góc AM
M ở đâu bạn nhỉ
ở một nơi nèo đó.................