Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)có BI là phân giác của \(\widehat{ABH}\)(vì BD là phân giác của \(\widehat{ABC}\))
\(\Rightarrow\frac{IA}{IH}=\frac{BA}{BH}\)(tính chất)
\(\Rightarrow IA.BH=IH.AB\)(diều phải chứng minh)
Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{CBA}\)chung.
\(\Rightarrow\Delta ABC\approx\Delta HBA\left(g.g\right)\)(điều phải chứng minh)
A B C H I D O
a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC
CH _|_ AB mà BD _|_ AB => CH // BD
=> BHCD là hình bình hành
b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường
mà có I là trung điểm của BC )gt-
=> I là trung điểm của HD
=> H;I;D thẳng hàng
c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD
=> OI là đường trung bình của tam giác AHD
=> OI = AH/2
=> 2OI = AH
d, đang nghĩ
a) Tứ giác BHCDBHCD có:
BH//DC (do cùng ⊥AC
CH//BD (do cùng ⊥AB
⇒BHCD là hình bình hành (
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )
A B C H K M I
a, Xét tam giác BAC và tam giác AHC ta có :
^BAC = ^AHC = 900
^C _ chung
Vậy tam giác BAC ~ tam giác AHC ( g.g )
b, Xét tam giác AHB và tam giác HKA ta có
^BHA = ^HKA = 900
^BAH = ^AHK ( so le trong )
Vậy tam giác AHB = tam giác HKA ( g.g )
\(\Rightarrow\frac{AH}{HK}=\frac{AB}{AH}\)( tỉ số tương ứng ) \(\Rightarrow AH^2=AB.HK\)