K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

A B C D K 1 2 1 2 H

a)

Xét tam giác vuông CIH và tam giác vuông CBK có: 

có góc C chung

=> \(\Delta CIH~\Delta CBK\)( góc -góc)

=> \(\frac{CI}{CB}=\frac{CH}{CK}\Rightarrow CI.CK=CB.CH\) (1)

Mặt khác: Xét tam giác ABC  vuoonh tại A và có đường cao AH

=> \(AC^2=CH.CB\)( hệ thức lượng trong tam giác vuông) (2)

Từ (1) và (2) => \(CI.CK=CA^2\)

b)  Do D đối xứng với A qua H

=> HA=HD mà AH vuông BC

=> BC là đường trung trực AD

=> AB=DB, AC= DC

Xét tam giác CAB và Tam giác CDB có: BC chung, AB=BD, AC=DC

=> \(\Delta CAB=\Delta CDB\) ( c-c-c)

=> \(\widehat{B_1}=\widehat{B_2}\)(3) 

 và \(\widehat{CDB}=\widehat{CAB}=90^o\) ( các góc tương ứng bằng nhau)

Xét tứ giác CAKB có: \(\widehat{CAB}=\widehat{CKB}=90^o\)

=> TỨ giác CAKB nội tiếp  ( vì có hai góc nội tiếp chắn một cung bằng nhau)

=> \(\widehat{B_1}=\widehat{K_1}\)(4)

Xét tứ giác CKBD có: \(\widehat{CDB}+\widehat{CKB}=90^o+90^o=180^o\)

=> Tứ giác CKBD nội tiếp ( vì có tổng  hai góc đối bằng 180^o)

=> \(\widehat{B_2}=\widehat{K_2}\)(5)

Từ (3), (4), (5)

=> \(\widehat{K_2}=\widehat{K_1}\)

=> KC là phân giác góc AKD

28 tháng 6 2021

Chữ chen chít chữ hi vọng bạn đọc ra heheundefined

19 tháng 7 2021

Dạ em cảm ơn nhiềuu

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

15 tháng 8 2020

a)

Có:    \(AH^2=HB.HC\left(HTL\right)\)

=>     \(16=3HC\Rightarrow HC=\frac{16}{3}\)

Lần lượt áp dụng định lí PYTAGO ta được:   

\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)

b) Có:  BH và DI cùng vuông góc với EI 

=> BH // DI

=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:

=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)

Mà:    \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)

=>   \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)

=>   \(AH=HI\)

=>    \(DI=6;HI=4\)

MÀ:    \(EA=AH\left(gt\right)=4\)

=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)

Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)

=> Diện tích tam giác HCE    \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)

Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa