K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

Tâm O là trung điểm của AH

bán kính là AH/2=R

b:

ΔABC vuông tại A có AH là đường cao

nên HA^2=HB*HC

=>HA/HC=HB/HA

HO/HN=HA/HC=HB/HA

Xét ΔBHO vuông tại H và ΔAHN vuông tại H có

HB/HA=HO/HN

=>ΔBHO đồng dạng với ΔAHN

31 tháng 1 2022

tính : \(BC=5.AH=\dfrac{12}{5}\)

+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN

Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)

=> OA ⊥ MN

do vậy : KI//OA

+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO

+ dẫn đến tứ giác AOKI là hình bình hành.

Bán kính:

\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)

31 tháng 1 2022

thank

24 tháng 1 2023

ít tra mạng xong tham khảo đi ạ

nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi