K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Xét ∆ ABC vuông tại A có M là trung điểm AB

=> HM là đường trung tuyến ứng với cạnh huyền AB

=> HM = 1 2 AB => AB = 2HM = 2. 15 = 30 (cm)

Xét ∆ ACH vuông tại H có N là trung điểm AC

=> HN là đường trung tuyến ứng với cạnh huyền AC

=> HN = 1 2 AC => AC = 2HN = 2. 20 = 40 (cm)

Áp dụng định lý Pitago cho ABH vuông tại A có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Ta có: HC = BC – BH = 50 – 18 = 32 (cm)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

AH.BC = AB.AC => AH.50 = 30.40 => AH = 24 (cm)

Đáp án cần chọn là: D

24 tháng 7 2018

B M A N C H

Tam giác AHB vuông tại H có HM là trung tuyến

=>  HM = 1/2 AB   => AB = 30 cm

Tam giác AHC vuông tại H có HN là trung tuyến

=>  HN = 1/2 AC  => AC = 40 cm

Áp dụng Pytago ta có:  AB2 + AC2 = BC2

                         =>  BC2 = 302 + 402 = 2500

                         => BC = 50

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC  => \(BH=\frac{AB^2}{BC}=18\)

AC2 = CH.BC  =>  \(CH=\frac{AC^2}{BC}=32\)

HA.BC = AB.AC  =>  \(HA=\frac{AB.AC}{BC}=24\)

7 tháng 9 2019

Xét tg ABH vuông tại H có Ma=MB=> MH là đường trung tuyến

=>MH=\(\frac{1}{2}\)AB=>AB=30cm

Xét tg AHC vuông tại H có AN=NC=>HN là đường trung tuyến

=>HN=\(\frac{1}{2}\)AC=>AC=40cm

Xét tg ABC vuông tại A có:

BC2=AB2+AC2(py-ta-go)

=>BC=50cm

Xét tg ABC có góc A=90o,đg cao AH ứng vs cạnh huyền BC.Aps dụng HTL tro tg vuông ta có:

AB2=BC.BH=>BH=18cm

Lại có:AC2=HC.BC=>HC=32cm

AH2=BH.HC =>AH=24cmHỏi đáp Toán

A B C H M N

Vì M là trung điểm của AB => HM là trung tuyến 

Mà \(\Delta ABH\)vuông tại H 

=> \(HM=\frac{1}{2}AB\)( trong tam giác vuông trung tuyến ứng với cạnh huyền = 1 phần 2 cạnh huyền )

=> AB = 30 cm

Chứng minh tương tự 

=> AC= 40 cm

Xét \(\Delta ABC\)có ( A = 900 )

=> \(BC=\sqrt{AC^2+AB^2}=50\)cm

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Rightarrow\frac{1}{AH}=\sqrt{\frac{1}{AB^2}+\frac{1}{AC^2}}=\frac{1}{24}\)

\(\Rightarrow AH=24cm\)

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(AB^2=BH.BC\)

\(\Rightarrow BH=AB^2:BC=18cm\)

Vì BH + HC = BC 

\(\Rightarrow HC=50-18=32cm\)

Study well 

24 tháng 6 2018

Đặt \(\frac{AB}{5}=\frac{AC}{6}=k\)

=> AB = 5k, AC = 6k.

Áp dụng hệ thức lượng trong tam giác vuông ta có: 

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

=> \(\frac{11}{30}k^2=\frac{1}{900}\)

=> \(k=\frac{\sqrt{330}}{330}\left(cm\right)\)

=> AB = \(\frac{\sqrt{330}}{66}\) (cm); AC = \(\frac{\sqrt{330}}{55}\)(cm)

=> HB, HC = (Pytago)