K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ΔHDB vuông tại D

mà DI là đường trung tuyến

nên \(DI=IH=IB\)

Xét ΔIHD có IH=ID

nên ΔIHD cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)

nên \(\widehat{IDH}=\widehat{HCA}\)

ADHE là hình chữ nhật

=>\(\widehat{EAH}=\widehat{EDH}\)

=>\(\widehat{EDH}=\widehat{HAC}\)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{HAC}+\widehat{HCA}\)

\(=90^0\)

=>DI\(\)\(\perp\)DE

c: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên EK=KH=KC

Xét ΔKEH có KE=KH

nên ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)

ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

=>\(\widehat{HED}=\widehat{HAB}\)

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KE\(\perp\)DE

Ta có: KE\(\perp\)DE

ID\(\perp\)KE

Do đó: ID//KE

Xét tứ giác KEDI có

KE//DI

KE\(\perp\)ED

Do đó: KEDI là hình thang vuông

d: DI=1cm

mà HB=2DI

nên HB=2*1=2=2cm

EK=4cm

mà CH=2EK

nên \(CH=2\cdot4=8cm\)

BC=BH+CH

=2+8

=10cm

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)

16 tháng 10 2016

a) Xét tam giác AHD, có: 
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)

b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)

Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)

Từ (1), (2) => MBIN là hình bình hành (đpcm)

c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ

P/S: Không chắc câu c) cho lắm.
 

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành